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Designing an Autonomous Helicopter Testbed: 

From Conception Through Implementation 

Richard D. Garcia 

ABSTRACT 

 

Miniature Unmanned Aerial Vehicles (UAVs) are currently being researched for a wide 

range of tasks, including search and rescue, surveillance, reconnaissance, traffic monitoring, fire 

detection, pipe and electrical line inspection, and border patrol to name only a few of the 

application domains.  Although small / miniature UAVs, including both Vertical Takeoff and 

Landing (VTOL) vehicles and small helicopters, have shown great potential in both civilian and 

military domains, including research and development, integration, prototyping, and field testing, 

these unmanned systems / vehicles are limited to only a handful of university labs.  For VTOL 

type aircraft the number is less than fifteen worldwide!  This lack of development is due to both 

the extensive time and cost required to design, integrate and test a fully operational prototype as 

well as the shortcomings of published materials to fully describe how to design and build a 

“complete” and “operational” prototype system. 

This dissertation overcomes existing barriers and limitations by describing and presenting 

in great detail every technical aspect of designing and integrating a small UAV helicopter 

including the on-board navigation controller, capable of fully autonomous takeoff, waypoint 

navigation, and landing.  The presented research goes beyond previous works by designing the 

system as a testbed vehicle.  This design aims to provide a general framework that will not only 

allow researchers the ability to supplement the system with new technologies but will also allow 

researchers to add innovation to the vehicle itself.  Examples include modification or replacement 

of controllers, updated filtering and fusion techniques, addition or replacement of sensors, vision 

algorithms, Operating Systems (OS) changes or replacements, and platform modification or 

replacement.  This is supported by the testbed’s design to not only adhere to the technology it 

currently utilizes but to be general enough to adhere to a multitude of technology that have yet to 

be tested.   
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This research will allow labs without the proper expertise to build a safe and reliable 

vehicle that can provide them access to real world data thus increasing the effectiveness and 

validity of their research.  It will also allow researchers working in simulation to quickly enter 

into UAV development without utilizing thousands of man hours to create an unmanned vehicle. 

The presented research is designed to benefit the entire UAV researching community by 

allowing in depth access to an area of research that has been typically classified as too expensive 

and too time consuming to enter. 
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Chapter 1 

 Introduction  

 

 The field of robotics, for the past few decades, has not only allowed humans to expand 

their abilities, it has allowed them to surpass them.  This is possible through the shift from 

teleoperated robotics, robotic movement determined and directly controlled by a human operator, 

to fully autonomous robotics designed to remove or reduce the need for the human component.  

The ability of an autonomous system to surpass the capabilities of a human operator are obvious 

when one considers the limitations of the human body in locomotive speed and decision making 

as compared to the operating speed of the newest computer systems and the speed and precision 

of direct current motors. 

More recently, humans have seen the capabilities of robotics expand to the flight control 

of both commercial and military vehicles.  This shift has even begun to include highly agile and 

low cost Miniature Unmanned Aerial Vehicles (MUAVs).  These MUAVs not only make it 

feasible for low budget research of control but expanded the flight package of these vehicles by 

allowing for inverted flight, metronomes, stall turns, flips, and rolls. 

 

1.1 Why Helicopters? 

 

Since the first known flight of a rotary wing vehicle in 1907 [1, 2], there has been a 

consistent drive to enhance this vehicle’s capabilities.  Although the ideology of the helicopter 

can be traced back to 4th century China [3], it was not until the early 1900s that the idea of a 

vertical takeoff and landing vehicle could be materialized.  Even with Paul Cornu’s first vertical 

flight in 1907 it would take another 46 years and the invention of the turbine engine to make these 

vehicles useful.  In 1961 the first unmanned VTOL vehicle, DASH, was designed and utilized for 

naval defense [4].  Although largely consider a failure, the DASH system did open the way for 

the development and implementation of many more systems.  Since 1961 many unmanned VTOL 

vehicles, including ducted fans, tilt rotors, and rotary wing vehicles, have been developed in an  
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attempt to broaden their overall usage.  To date, the most utilized of these vehicles is the rotary 

wing vehicle, typically known as the helicopter. 

A helicopter’s most distinct advantage as an aircraft is its ability for vertical flight.  This 

ability allows it to takeoff and land vertically but also to hover.  This provides the vehicle access 

to areas typically restricted from fixed wing vehicles.  This advantage became globally 

recognized with the introduction of the Bell UH-1, commonly referred to as the Heuy, into the 

Vietnam War.  The mountainous terrain of Vietnam and constant need for troop deployment and 

extraction in the field made setting up and maintaining a runway for fixed wing vehicles almost 

impossible.  The Heuy allowed for troop deployment and extraction, supply delivery, medical 

evacuation, and air support without requiring a landing area and could takeoff and land in manner 

of seconds. 

Helicopters, although highly agile and highly developed, are not without their 

disadvantages.  Helicopters are highly non-linear and heavily coupled aircrafts [5-9].  Changes in 

any distinct control output will have an effect on all controlled areas of the vehicle.  For example, 

an alteration in heading will typically either add to or subtract from the amount of torque used by 

the main rotor.  This will alter the overall head speed and thus affect the vertical thrust provided 

by the main rotor.  Depending on the state of the vehicle, this could affect any or all of the 

required collective, elevator, aileron, and throttle inputs.  Helicopters also have far lower 

airspeeds and far shorter ranges than fixed wing vehicles [10, 11].  This coupled with the harsh 

vibrations typical to rotary vehicles and the difficulty in safely and effectively piloting a 

helicopter reduced the helicopter’s overall appeal.  Even with the disadvantages of the helicopter 

it is one the safest and most effective means of transporting people and equipment to heavily 

congested and undeveloped areas. 

With the development of MUAVs, mostly for Radio Control (RC) hobbyist, came the 

ability to study and simulate the effects and dynamics of a helicopter on a smaller more cost 

efficient scale.  As these RC MUAVs became more and more popular the designs of the vehicle 

became more and more developed.  The designers of these “toys” began to take advantage of the 

platform’s size, compactability, and speed.  Soon after, these vehicles began to be recognized for 

their high payload to weight ratios, maneuverability, and safety.  Currently there exist unmanned 

RC helicopters ranging from hundreds of pounds in weight and costing hundreds of thousands of 

dollars [12, 13] to weighting grams costing only tens of dollars [14].   

Today these RC helicopters are utilized for much more than weekend enjoyment.  Today 

dozens of research facilities throughout the world are attempting to harness the abilities of these 
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low cost, highly developed, extremely agile machines.  This is possible, in part, due to recent 

advancements in Micro-Electro-Mechanical Systems (MEMS) technology allowing for the 

miniaturization of many sensors and processing systems [15] used to automate the flight of 

VTOL vehicles.  However, as of this writing less than fifteen laboratories worldwide have 

successfully managed to develop and implement a fully autonomous miniature helicopter.  

Although these vehicles have shown great advancements in the areas of controller design, 

filtering and fusion algorithms, mechanical design, software development, and hardware 

implementation; their abilities are still heavily underutilized as discussed further in Chapter 2. 

 

1.2 Problem Statement 

 

The problem this dissertation addresses is as follows:  

Miniature unmanned vehicles are becoming popular due to their compact size, high 

maneuverability and high size-to-payload ratio. This is especially true with Vertical Takeoff and 

Landing (VTOL) vehicles due to their distinct capabilities to maneuver in any direction and to 

hover, even in highly confined areas.  These abilities have led to research discussing the possible 

roles these vehicles may have in search and rescue, surveillance, traffic monitoring, fire detection, 

pipe and electrical line inspection, and border patrol to name only a few.  Although the research 

has become increasingly popular, the testing of new and innovative ideas has typically been 

constrained to simulation and mathematical proofs.  Although these testing methods are crucial 

when designing safe and efficient ideas, they are far from complete and many times do not hold 

under real world situations. 

There are several limiting factors preventing testing and development on a testbed 

vehicle: 

 

• Lack of expertise:  Development of a testbed helicopter requires expertise in many areas 

including software design, electronic design, mechanical design, software and hardware 

integration, controller design, filter and fusion design, and safety piloting.  Many labs and 

institutions do not have all these areas of expertise available and thus must seek outside 

help for development.   

• Lack of resources:  The time associated with selecting processing hardware, sensors, 

platform, and an operating system coupled with designing controllers, filter and fusion  
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techniques, and a software architecture along with integration of software, hardware, and 

platform elements are extensive.  

• Proprietary knowledge:  Commercial systems lack even the most basic flexibility.  

Commercial systems utilize proprietary software and hardware which severely cripples 

their development abilities. 

• Highly specialized systems:  Academically owned and developed systems are typically 

designed for in-house use and are typically tightly integrated.  This type of design creates 

a system that is heavily specialized and only applicable to a very narrow field of 

development.  The tight integration also prevents ideas and technologies implemented on 

these vehicles from being individually extracted and tested on other systems. 

• Lack of intellectual integration:  Current published works are typically incomplete and 

sometimes inconsistent.  This is most likely due to the large number of experts required 

to build a system.  Each expert is typically concerned with their particular work and 

typically glazes over the rest of the vehicle’s design and any integration issues.  It is also 

typical to see individual expert’s publications span different versions of the system.  

Thus, the controllers described by a controls expert may have been implemented on a 

later version of the hardware described by the electronics expert’s publication.  This 

coupled with many expert’s desires or requirements to protect the specifics of their work 

has prevented many institutions from duplicating published vehicles [16]. 

 

The overall motivation for this research is based on the challenge to build a complete 

autonomous helicopter system based on sound foundational theory that can be easily adapted for 

a multitude of research purposes.  The objective of this dissertation is to provide the knowledge 

necessary to design and implement a safe and reliable UAV helicopter testbed.  This work 

provides complete detail for selecting a platform, processing system, and sensors along with 

integration of the hardware onto the platform as well as controller development, data filtering and 

fusion, OS selection, and software integration.  Great effort is placed on developing the system 

for easy integration of new sensors, processing hardware, software, or platforms.  

Note that this dissertation focuses specifically on miniature helicopters whose 

characteristics typically include a small foot print, low endurance, and minimal payload capacity.  

Although the focus is on miniature helicopters the validity of the information is not limited to 

these platforms and is applicable to other vehicles including ground and full-size vehicles. 
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1.3 Contributions 

 

  The proposed solution presented in this dissertation is the detailed design and 

implementation of a miniature helicopter testbed capable of autonomous takeoff, waypoint 

navigation, and landing as well as describing the rationale for developmental decisions and 

possible alternatives. 

 This work benefits all areas of research involving UAV vehicles including control 

development, mechanical design, system integration, data mining, artificial intelligence, and 

vision processing by allowing researchers access to a developmental testbed that is designed to 

advance and reaffirm their work.  Major contributions include: 

 

• Enabling the design and implementation of an autonomous testbed helicopter without the 

need for experts spanning multiple disciplines:  This is accomplished by providing all of 

the details from conception through implementation of a testbed helicopter including 

hardware selection, software design, integration and testing. 

• Alleviating the amount of time required to design and implement a testbed:  This 

dissertation not only provides the implementation and design of the testbed it also 

provides the specific hardware used to implement the information provided along with 

the software design and pseudocode for data acquisition, filter and fusion, and control. 

• Providing a system that utilizes zero proprietary information:  From conception this work 

was designed to be easily reproduced without “inside information”.  To adhere to this 

standard great effort is made to utilize as much Commercial off the Shelf (COTS) 

hardware as deemed possible.  To increase the ease of reproduction, this dissertation 

provides diagrams for all non-COTS hardware.  Software pseudo code is also provided 

along with detailed integration information.   

• Providing a design approach that facilitates a broad scope of development:  The work 

described in this document is designed to provide development opportunities for all areas 

of unmanned vehicles.  This is done by utilizing hardware and software that is designed 

for easy modification, replacement, or removal without requiring redesign of the system. 
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• Removing the possibility of information loss due to integration of multiple experts’ 

works:  Although many individuals influenced this work the testbed described in this 

dissertation was conceptualized, designed, implemented, and tested by one individual 

person.  This allows for an in-depth view of the entire testbed without information loss 

due to the collaboration of multiple experts. 

 

1.4 Organization of Dissertation 

 

The remainder of this dissertation is organized as follows:  Chapter Two provides related 

work in the area of autonomous unmanned helicopters including both commercial and open 

source systems.  Chapter Three presents detailed descriptions and justifications for the types of 

hardware utilized on the USF helicopter testbed including the platform, processing hardware, 

mounting hardware, and sensors.  Chapter Three also details the hardware assembly of the 

Unmanned Systems Lab (USL) testbed.  Chapter Four describes and justifies the software 

architecture utilized on the testbed including the OS, data acquisition, and data distribution 

techniques as well as the specific software processes.  Chapter Five details the algorithms used to 

calculate state data and convert control outputs to Pulse Width (PW) values.  Chapter Six is 

dedicated to detailing the controllers used on the USL testbed.  Chapter Seven details the 

simulator utilized for initial testing of both the controllers and multiple calculation algorithms.  

Chapter Eight discusses both the testing and performance of the implemented testbed.  Chapter 

Nine summarizes the dissertation and list several directions of future work.   

It should be mentioned that the organization of this dissertation is designed to express the 

natural development process taken when developing and building the UAV testbed.  It was 

designed to provide the reader with the basic steps necessary for development an implementation 

in an order that will reduce the overall number of pitfalls.  This includes selecting a platform, 

selecting and configuring the onboard hardware, basic software selection and setup, algorithm 

development and implementation, control, and testing. 
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Chapter 2 

Related Works 

 
There is currently great interest in the area of UAV research including search and rescue 

[17-20], surveillance [21-26], traffic monitoring [27-30], fire detection [31-34], pipe and 

electrical line inspection [35, 36], border patrol [37, 38], and failure tolerance [39] to name only a 

few.  Although UAVs have shown great potential in many of these areas their development as a 

whole has been somewhat slow.  This can be attributed to the difficulty in purchasing, replicating, 

or developing an autonomous vehicle to validate new ideas.   

 

2.1 Commercial UAVs 

 

Although there exist many commercial UAV helicopters today, the work discussed here 

focuses on miniature UAV vehicles typically classified as class I & II by Future Combat Systems 

(FCS) [40].  Table 1 briefly describes a list of commercial UAVs classified as types III & IV by 

FCS and is only mentioned to support the claim as to the interest currently involved in UAV 

VTOL research. 

One the most popular commercial MUAV designers today is Rotomotion.  Rotomotion 

utilizes proprietary software and hardware to produce a strap-on autonomous control system.  

This control system can be purchased with a wide variety of vehicles, see Table 2, and varies 

from tens of thousands to hundreds of thousands of U.S. dollars for a fully autonomous vehicle.  

Rotomotion’s strap-on control system can be mounted to any rotary vehicle capable of lifting the 

required equipment (1.25 lb control system, 7.2V battery, 4.8V battery, and mounting hardware).  

The flight controller is a self contained system and does not require a ground station or 

differential Global Positioning System (GPS) corrections.  The control system can typically hold 

the vehicle’s position within one meter of the commanded position [41]. 
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Table 1:  Commercial UAVs (Type III/IV) 

Manufacture Vehicle Specifications 
Bell Helicopter [42] Eagle Eye • Transitional vehicle (VTOL to fixed wing)

• Speeds up to 200 knots 
• Range of 800 nautical miles 
• Altitude of up to 20,000 ft 
• Up to 3 hours of flight time 

Sikorsky’s [43, 44]  Cypher II • Rotary vehicle with ability to add wings 
• Speeds up to 126 knots 
• Range of 100 nautical miles 
• Up to 3 hours of flight time 

Northrop Grumman [45]  Firescout (MQ-8B) • Helicopter vehicle 
• Speeds up to 125 knots 
• Range of 110 nautical miles 
• Altitude of up to 20,000 ft 
• Up to 8 hours of flight time 

SAIC/ATI [46] Vigilante (502) • Helicopter vehicle 
• Speeds up to 117 knots 
• Range of 110 nautical miles 
• Altitude of up to 13,000 ft 
• Up to 9 hours of flight time 

Bombardier [47] CL-327 Guardian • Counter rotating VTOL 
• Speeds up to 85 knots 
• Range of 108 nautical miles 
• Altitude of up to 18,000 ft 
• Up to 6.25 hours of flight time 

Boeing [48, 49] A160 
Hummingbird 

• Helicopter vehicle 
• Speeds up to 140 knots 
• Range of 1700 nautical miles 
• Altitude of up to 30,000 ft 
• Over 24 hours of flight time 

 

Although the Rotomotion control system allows for a COTS autonomous helicopter it has 

several drawbacks.  First, as of this writing the system cannot takeoff or land autonomously.  This 

requires that a specially trained pilot be available for all flight tests.  Second, the system utilizes 

proprietary software that must be configured for each individual platform.  Thus each vehicle, 

including vehicles of the exact same model, must be setup by a Rotomotion employee making the 

system anything but modular.  Last, the system utilizes proprietary hardware rendering the system 

useless for any type of software development. 
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Table 2:  Rotomotion’s COTS UAVs 

Platform Power Plant Dry Weight Dimensions Cost (USD) 
     
SR200 [50] Gasoline 2-Stroke 55 lbs 110x30x34 in 90000** 

SR100 [51] 
Gasoline, Diesel,  
Alcohol and Electric 35 lbs 58x20x27 in 35000** 

SR20 [52] Electric 16.5 lbs 48x15x22 in 16500** 
Bergen Observer* Gasoline 2-Stroke 25 lbs 52x15x23 in 35,000 
Bergen Twin* Gasoline 2-Stroke 18 lbs 60x20x26 in 25,000 

     * - Not currently in production 
     ** - Base cost 
 

Another popular commercial producer of autonomous helicopter systems is Neural 

Robotics Inc. (NRI).  NRI uses proprietary neural-network control software that provides stability 

in both hover and flight [53].  NRI’s control system also utilizes real-time adaptation to the 

effects of wind and weight.  NRI offers three platforms complete with autonomous hardware (see 

Table 3).  Each vehicle contains a flight control system consisting of a PC/104 computer stack, 

Attitude and Heading Reference System (AHRS), GPS, heading-hold gyroscope, as well as 

proprietary avionics command/control components [54]. 

Although NRI’s vehicles utilize state of the art software and hardware, as of this writing 

they are neither fully autonomous nor useful as developmental testbeds.  All of the vehicles 

offered by NRI require input from an operator to perform any type of maneuver classifying this 

system more as semi-autonomous.  The system also lacks the ability to be modified, adapted, or 

integrated by the end user.  This severely diminishes the usability of the system as a testbed for 

most types of research. 

To date there is not a commercially available autonomous VTOL vehicle that can be 

classified as a testbed.  This comes as no surprise as it would be difficult for any business to 

sustain a profit on a vehicle that is entirely open source. 

 

Table 3:  NRI’s COTS UAVs 

Platform Power Plant Dry Weight Dimensions Cost (USD) 
     
Explorer Turbine 30 lbs 83 in 35000* 
Express G Gasoline 15 lbs 60 in 19800* 
Express E Electric 15 lbs 60 in 16700* 

      *Cost without ground station 
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2.2 Open Source UAVs 

 

There currently exist several open source, RC based, autonomous helicopters.  These 

helicopters are typically built and maintained by academic societies or government sponsored 

organizations and most notably include the Massachusetts Institute of Technology (MIT), 

Carnegie Mellon University (CMU), Stanford, Georgia Tech, University of Southern California, 

Berkeley, and CSIRO (see Table 4).  These vehicles range in size, propulsion, payload capacity, 

and endurance but were all developed with one goal in mind: researching and advancing the field 

of autonomous helicopters.  Collectively, these helicopters have shown great ability to hover [55, 

56], navigate [57-60], takeoff [61], land [61-64], and track objects [34, 65-67], and have shown 

limited abilities to hover inverted [68], barrel roll [9, 69, 70], flip [9, 69], funnel [9, 55], stall turn 

[69], and pirouette [71] utilizing methods that include Proportional Integral Differential (PID), 

Fuzzy, H-infinity, Neural Network (NN), and Linear-Quadratic Regulator (LQR) controllers. 

The most notable of all the previously mentioned autonomous helicopters is the Georgia 

Tech GTMax, see Figure 1.  Georgia Tech’s Software Enabled Control (SEC) group, as well as 

Berkeley, Carnegie Mellon, and various government organizations, utilize a Yamaha RMax 

platform, a 2-stroke horizontally opposed 246cc engine mounted to a 3.63 m long frame [13].  

Georgia Tech’s RMax, along with a custom developed on-board system, has shown the ability to 

perform waypoint navigation, autonomous takeoff and landing [72], and failure detection and 

correction [72].  The entire on-board system, summarized in Table 4 and detailed in [72], is 

powered by the RMax’s on-board generator [73].  Control of the helicopter is handled by both 

Georgia Tech’s Neural Network (NN) controllers and the proprietary Yamaha Attitude Control 

System (YACS). 
 

    
Figure 1: Georgia Tech’s Testbed Helicopter (GTMax) [74] 
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Table 4:  Open Source UAV Helicopter Testbeds 

University Hardware and Sensors Software 
Massachusetts 

Institute of 
Technology 

[75-77] 

• X-Cell 60 Helicopter 
• ISIS-IMU (100Hz and 0.02 deg/min drift) 
• Honeywell HPB200A Altimeter (2ft 

accuracy) 
• Superstar GPS (1 Hz) 

• QNX Operating System 
• 13-state extended Kalman filter 

(state estimation) 
• LQR based control 

Carnegie 
Mellon 

University  
[77-80] 

• Yamaha R-Max Helicopter 
• Litton LN-200 IMU (400 Hz) 
• Novatel RT-2 DGPS (2cm accuracy) 
• KVH-100 flux-gate compass (5 Hz) 
• Yamaha laser altimeter 

• VxWorks Operating System 
• 13-state extended Kalman filter 

(state estimation) 
• Control based on PD and H∞ 

control 
Stanford 

University 
[9, 55] 

• XCell Tempest 91 Helicopter 
• Microstrain 3DM-GX1 (100Hz) 
• Novatel RT-2 DGPS (2cm accuracy) 
• DragonFly2 cameras (position est.) 

• Undisclosed Operating System 
• 12-state extended Kalman filter 

(state estimation) 
• Differential Dynamic 

Programming (DDP) 
• Extension of Linear Quadratic 

Regulator (LQR) 
Georgia 

Institute of 
Technology 
[72, 73, 81] 

• Yamaha R-50 Helicopter 
• ISIS-IMU (100Hz and 0.02 deg/min drift) 
• Novatel RT-2 DGPS with 2cm accuracy 
• Radar and Sonar Altimeters 
• HMR-2300 triaxial magnetometers 

• OS: QNX, VxWorks, Linux 
• Real-time CORBA 
• Object Request Broker (ORB) 

Architecture 
• 17-state extended Kalman filter  
  (state estimation) 
• Neural networks control  
  (Feedback linearization) 

University of 
California 
Berkeley 
[71, 82] 

• Yamaha R-Max & Maxi Joker 
• Boeing DQI-NP INS/GPS system 
• Novatel Millen RT-2 DGPS (2cm 

accuracy) 

• VxWorks Operating System 
• No state estimation (provided by 

sensor) 
• Reinforcement Learning control 

University of 
Southern 
California 
[83, 84] 

• Bergen twin Industrial Helicopter 
• ISIS IMU (100Hz and 0.02 deg/min drift) 
• Novatel RT-2 DGPS (2cm accuracy) 
• TCM2-50 triaxial magnetometer 
• Laser altimeter (10 cm accuracy @ 10 Hz)

• Linux Operating System 
• 16-state Kalman filter (state 

estimation) 
• Decoupled PID based control 

CSIRO 
[77, 85] 

• X-Cell 60 Helicopter 
• Custom embedded IMU with compass (76 

Hz) 
• Ublox GPS with WAAS (2m accuracy) 
• Stereo vision for height estimation 

• LynxOS Operating System 
• Velocity estimation using vision 
• Two 7-state extended Kalman 

filters 
• Complimentary filters 
• PID based control 

JPL 
[86, 87] 

• Bergen Industrial Helicopter 
• NovAtel OEM4 DGPS (2cm accuracy) 
• ISIS IMU 
• MDL ILM200A laser altimeter 
• TCM2 compass 

• QNX real-time OS 
• Behavior-based and H∞ control  
• Extended Kalman filter (state 

estimation) 
• Image-based motion estimates 
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Although the RMax platform is highly advanced and well utilized it is not without issues.  

First, the RMax platform is nine feet long from tail to nose, without the blades attached, and 

weighs approximately 140 lbs.  The shear size and weight of the vehicle and hardware limit its 

transportation and makes efficient deployment very difficult.  Second, the RMax platform with 

the GPS option and a 100 meter flight ceiling has a price tag of approximately $240,000 USD.  

This is without the custom flight control system, Inertial Measurement Unit (IMU), ground radar, 

vision system, and support equipment.  Last, the RMax platform does not contain an autorotation 

clutch.  This device, installed on all modern full-size rotary aircraft, allows the platform to 

maneuver in the event of an engine failure.  It is fairly trivial for a trained pilot to safely fly and 

land a VTOL vehicle containing an autorotation clutch that has had an engine failure.  This is a 

serious safety issue and should be considered when utilizing a VTOL vehicle without an 

autorotation clutch. 

Of all the autonomous helicopters in existence today, the GTMax is the only fully 

developed testbed vehicle.  The vehicle was developed to ensure that multiple organizations could 

utilize the hardware and software for development purposes.  The development of the GTMax 

also follows many of the ideologies that this work follows.  Although similar in concept the 

design aspects are quite different.  The GTMax has almost and order of magnitude greater 

payload capacity, weights an order of magnitude more than the USL testbed, and has over an 

order of magnitude greater cost.  As such the GTMax was developed with little concern for its 

components size, weight, and power requirements and inherently has greater stability in flight. 

Of all the UAV helicopters currently being used, Stanford’s X-Cell Tempest is the only 

one attempting to utilize the extreme aerobatic maneuvers capable of small RC helicopters.  The 

X-Cell Tempest has shown the ability to perform multiple flips, rolls, and nose-in and nose-out 

funnels [9, 71], Figure 2.  To perform these maneuvers, the X-Cell Tempest utilizes the on-board 

system, described in Table 4, two ground mounted cameras and an off-board computer.  Control 

is performed through multiple, on-board and off-board, Kalman filters and reinforcement learning 

techniques that attempt to learn an LQR task through Differential Dynamic Programming (DDP).  

This entire system allows the vehicle to estimate its position within 25cm and control the vehicle 

at a rate of 10Hz. 



www.manaraa.com

 

 

13

 
Figure 2: Mosaic of Stanford X-Cell Tempest Performing an Autonomous Flip [88] 

 

Another notable autonomous unmanned helicopter is USC’s Autonomous Vehicle Aerial 

Tracking and Reconnaissance (AVATAR) vehicle.  The AVATAR’s platform is a Bergen 

Industrial Twin helicopter utilizing a 46cc twin cylinder two cycle engine with a 10 kg payload 

capacity.  This helicopter system is of particular interest due to its almost exclusive utilization for 

UAV vision research and development.  The AVATAR vehicle has been used to implement 

visual servoing [89], visual identification of objects [65], vision based autonomous landings [62, 

63], and target tracking [65, 89].  Aside from the vision algorithm development, the AVATAR 

has been used in the deployment of marsupial robots [90], autonomous deployment and repair of 

sensor networks [57], and PID control. 

Although several other autonomous helicopter systems exist, see Table 4, their variations 

are minimal and none can be classified as purely open source testbed systems.  As such, to further 

discuss them would be heavily repetitive and inconsequential to this work.  It should be noted that 

all of these open source UAV helicopters, with the exception of the GTMax, appear to be 

developed with a specific goal in mind.  This factor severely limits the scope of research 

obtainable through the use of these vehicles and in many cases has required the development of 

multiple vehicles each dedicated to an area of research. 

Although the advancements in MUAV helicopters are impressive they do not begin to 

fully utilize the capabilities of these small agile vehicles which are capable of tick-tocs, 

autorotation (both normal and inverted), death spirals, funnels/tornadoes, and pirouetting flips 

[91].  These types of maneuvers can prove useful when attempting to avoid or evade obstacles, 

land without power, or simply track a highly dynamic target. 
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2.3 Summary 

 

Although prior and ongoing research has shown the enormous benefits and interest in the 

development of MUAVs the migration of these ideas from paper to realization has been greatly 

limited.  To realize the full benefit of these vehicles and to alleviate the gap between innovative 

ideas and innovative technologies there must be a medium for development and testing.  This is 

only possible though the full disclosure of information and is the backbone of academic research. 
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Chapter 3 

Platform & Hardware 

 

Hardware is the building block of all unmanned vehicles and a great source of difficulty 

when designing a testbed vehicle.  Decisions made about hardware can significantly decrease or 

increase the complexity and functionality of an unmanned system.  For these reasons great effort 

is taken to effectively describe and justify all hardware, interconnections, and mounts utilized on 

the proposed autonomous helicopter testbed.  For completeness this work also details the 

assembly of the vehicle to assure that the work can be effectively reproduced.  Note that any 

hardware mentioned in this text that does not provide its specific model can be referenced in 

Appendix A for details. 

 

3.1 Platform 

 

Platform selection is crucial for developing an autonomous helicopter that fits both the 

testbed’s current needs and future desires.  There exist several variations of miniature helicopters 

available including turbine, electric, methanol, and gasoline.  Methanol based systems are by far 

the cheapest versions of RC helicopter on the market but require special engine tuning, constant 

availability of methanol fuel, and expel a large amount oil from the exhaust.  Gasoline helicopters 

typically have the longest runtimes for their size, 30-90 minutes, and high payload capacities, 

approximately 10kg, but require the operator to store gasoline and require special tuning of the 

carburetor.  Turbine based helicopters have the highest payload to weight ratios but are the 

highest priced platforms available and require the purchasing and storage of jet fuel.  Last, 

electric platforms only utilize batteries and thus do not require the handling or storage of the 

hazardous fuel.  Electric platforms also have reduced vibrations due to the use of an electric 

motor.  The drawbacks are that electric vehicles have only average run times and average payload 

capacities, approximately 15-20 minutes and 4-5 kg respectively.  Note that the statistics provided 

above are for comparison and are based on similar sized vehicles, 90 to 120 size RC vehicles.   
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The platform chosen for the USL autonomous helicopter testbed is the electric Maxi-

Joker II, Figure 3.  The Maxi-Joker II helicopter has the following characteristics: 

 

• Manufacturer:  Joker 

• Main Rotor Diameter: 1.8 meter 

• Dry Weight:  4.22 kg (w/o batteries) 

• Dimensions:  56x10.25x16.5 in (w/o Blades) 

• Payload Capacity: 4.5 kg (after batteries) 

• Endurance:  15-20 min 

• Motor Battery:  37 V (10A) Lithium Polymer 

• Servo Battery:  4.8 V (2.0A) NiMh 

• Engine:   Plettenberg HP 370/40/A2 Heli 

• Speed Controller: Schulze future 40/160H 

 

This Maxi Joker II is also equipped with a Futaba GY-401 heading hold gyro, 800mm 

carbon main rotor blades, 125 mm carbon fiber tail rotor blades, a Futaba S9254 tail servo, three 

Futaba S9250 main servos, and a Futaba R319DPS radio receiver.  This platform was chosen 

over the previously mentioned platforms due to its cost, approximately $3000 USD ready-to-fly, 

desire to avoid carrying and storing explosive fuel, reduced vibrations, relatively small size, and 

ability to handle wind gust exceeding 20 mph. 

 

 
Figure 3:  Stock Joker-Maxi II Helicopter 
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Note that no modifications were made to the Maxi Joker II kit or any of the above 

mentioned equipment.  The kit, motor, speed controller as well as all support equipment were 

assembled and setup as instructed in the manufacturer supplied manuals. 

 

3.2 Hardware 

 

The main hardware components of the UAV system consist of: 

 

• Pentium M 755 2.0 GHz Processor  

• G5M100-N mini-ITX motherboard  

• Microstrain 3DMG-X1 IMU 

• 2 Gigs of Crucial 333 MHz RAM 

• Novatel Superstar 2 GPS receiver (5 Hz, 5V model)  

• Microbotics Servo/Safety Controller (SSC) 

• Thunderpower 11.1V 4.2Ah LiPo Battery 

• Intel Pro 2200 802.11B/G Mini-PCI wireless card 

• URG-04LX Hokuyo laser range finder 

• IVC-200G 4channel frame grabber 

• 120 Watt picoPSU-120 Power supply 

• Sony FCB-EX980S module camera 

 

A complete list of all utilized hardware is provided in Appendix A. 

This configuration is used because of its high computational capabilities, various 

Input/Output (I/O) ports, small size, low heat emission, and cost.  Figure 4 depicts the overall 

concept for the on-board processing system. 
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Figure 4: Conceptual Hardware Diagram 

 

3.2.1 Enclosure 

 

Autonomous vehicles typically have multiple components that must be protected from 

their natural operating environment.  The most typical method of protection is to encase these 

items within some type of enclosure.  Enclosure design is generally specific to the choice of UAV 

platform and sensing/computing hardware that one is attempting to utilize.  A system that is  
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Figure 5: Empty Enclosure with EMI Foil 

 

exposed to harsh environmental conditions must be designed and built to withstand those 

circumstances.  Thus an enclosure designed for a turbine helicopter must be able to withstand the 

heat and vibration common to this type of platform.   

The enclosure designed for the Joker-Maxi 2 helicopter testbed is a 21.7 x 17.5 x 6.1 cm 

basswood box, see Figure 5.  This enclosure is specifically designed to encase and protect the 

processing system, GPS receiver, and safety switch.  Basswood is utilized for the enclosure to 

ensure that the weight is kept to a minimum and that redesign due to hardware modification 

would be cheap, simple, and fast.  The utilization of wood has two major flaws.  First, wood is an 

extremely poor conductor of heat.  Thus, the internal components had to be sufficiently resilient 

to heat.  Second, there is no natural Radio Frequency (RF) shielding effects in wood.  Through 

experimentation it was discovered that frequencies from the motherboard interfere greatly with 

GPS reception.  Several variations of motherboards were tested at varying frequencies and GPS 

degradation varied from 20% to 100% based on the type of hardware and relative location, up to 

30 inches, from the GPS antenna and receiver.  To prevent Electromagnetic Interference (EMI), 

created from within the enclosure, from effecting components located outside of the enclosure a 

layer of 3M 1345 EMI foil was applied externally to the enclosure.  This created a Faraday shield 

which prevents RF from leaving or entering the enclosure.  To prevent internal EMI from 

affecting the GPS receiver, located within the enclosure, the receiver is also encased in EMI foil, 

discussed further in Section 3.3.4.    
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3.2.2 Servo/Switch Controller 

 

Typical MUAVs are controlled by Pulse Width Modulation (PWM) servos.  To 

autonomously control an RC vehicle hardware must be present that can communicate efficiently 

and effectively with both the processing system and PWM servos.  It should also be noted that 

typical servos require constant refresh to hold position.  Thus servo control hardware must be 

capable of refreshing positions at an appropriate rate, typically 50 Hz or more. 

Besides control, one must also be aware of the safety concerns inherent to developing and 

testing a UAV, especially helicopters.  It is inevitable that a software or hardware bug will cause 

the vehicle to endanger itself and possibly others.  For this reason it is necessary that any 

autonomous vehicle be equipped with either a takeover or stop switch.  For the purpose of this 

research a stop switch is defined as a device that removes the vehicle’s ability to function.  This 

type of device can simply cut power to the motor or immediately destroy the vehicle.  Although a 

stop switch is effective, it is much more cost effective and typically safer to utilize a takeover 

switch.  A takeover switch allows a human, or possibly secondary system, to immediately take 

full control of the vehicle.  Note that safety devices such as the takeover and stop switch must be 

functional in the event of a failure.  Thus, these safety devices must be designed in manners that 

allow them to function even if the rest of the system does not.  These types of safety devices will 

not only increase safety for the user but also for those occasional onlookers. 

To adhere to these requirements the USL Joker-Maxi II helicopter is equipped with the 

Microbotics Servo/Switch Controller (SSC).  This controller allows the on-board processing 

system to output servo commands, via RS232, to all PWM devices used on the vehicle.   The SSC 

is designed to allow a single switch on any common radio controller to take immediate control of 

the vehicle.  The SSC also allows the on-board processing system to query the state of control, 

autonomous or human, and the current PWM signals to and from the SCC. 

The interface to the SSC is a 44 pin high density D-sub connector.  This interface initially 

presented somewhat of a design issue.  Initially interface with the device was accomplished via a 

custom made cable.  To allow for a varying number of PWM devices the cable had to be designed 

to allow for the maximum number of possible servos.  This created a cable that had multiple 

unused connections hanging from the side of the enclosure.  This became both an aesthetic 

problem and a safety concern as connections were easily crossed during hardware maintenance or 

upgrades.  To prevent these types of issues from occurring, a custom interface board was 

designed.  This board simply presents a row of standard 3-pin servo pinouts which can 
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Figure 6: Front (left) and Back (right) of the SSC Interface Board 

 

be utilized as desired.  This board is also utilized to provided external interfaces for the 

processing system (both power and data), external sensors (power only), and safety switch (power 

only), see Figure 6.  A schematic of the SSC interface board is given in Appendix B. 

Due to the safety issues surrounding UAV research and the importance of manual 

takeover control, the SSC interface board is designed to support a secondary battery dedicated to 

the SSC.  This design provides a human operator with complete control even in the event that the 

main power supply fails.  The USL Maxi-Joker II utilizes a small 11.1V 0.5Ah LiPo battery for 

the SSC power supply.  This battery can supply power to the SSC for dozens of flights before 

requiring recharge, see Chapter 8. 

 

3.2.3 Orientation & Position Sensors 

 

Vehicle state data, typically orientation, velocity, and/or position, are crucial to 

controlling any autonomous vehicle.  Although there are numerous ways to obtain a system’s 

orientation, velocity, and positional information, only a select few are widely accepted and 

heavily utilized. 

The first of these methods includes utilization of a complete sensor suite.  This method 

typically utilizes multiple sensors that directly provide the end user with all desired data.   

Although optimal, this type of method is rarely feasible.  The barrage of sensors required to 

obtain the appropriate data at the desired rate typically exceeds either the payload of the vehicle 
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or the abilities of current technology.  A typical example of a complete sensor suite for a fixed 

wing vehicle would include an Inertial Measurement Unit (IMU), GPS, and pitot sensor.  These 

sensors can directly supply the position, velocity, and heading of the vehicle. 

A second method is to utilize a sub-optimal sensor suite and attempt to calculate the 

desired values from the provided information.  An example of this is utilizing an IMU to directly 

sense the orientation and accelerations of the vehicle and then attempting to calculate the position 

and velocity of the vehicle through integration of the accelerations.  This type of method can 

significantly reduce the size and complexity of the hardware components.  Although obviously 

beneficial, this type of method is limited by the abilities of the calculations.  A second order 

integration to determine position from acceleration data, even from an extremely accurate sensor, 

will allow error to grow exponentially and typically diverge within a matter of seconds.  Although 

this type of error can be reduced through filtering and fusion, the drawbacks should be taken into 

account when considering this method. 

Third, it is mathematically possible to derive orientation, position, and velocity without 

sensors by tracking the control inputs into the system and deriving the necessary data through a 

mathematical model of the vehicle.  Although theoretically possible, controlled systems typically 

contain uncontrollable and highly dynamic inputs (wind, gravity variation, barometric pressure, 

temperature, etc) that greatly affect the accuracy of the vehicle model.  It is possible, however, to 

utilize a single sensor such as a GPS to dynamically tune the vehicle’s model and thus correct for 

uncontrolled or unknown inputs.  The usability of this method is greatly dependent on the 

accuracy of the vehicle’s model as well as the accuracy and data rate of the sensor utilized for 

tuning. 

To satisfy the need for orientation, velocity, and positional data required to successfully 

control the USL testbed helicopter a Microstrain 3DMG-X1 IMU and Superstar II GPS receiver 

(5Hz model) were chosen, Figure 7.  The Microstrain IMU allows the user access to orientation 

(Euler angles or Quaternions), accelerations, and angular rates at a rate of up to 100Hz.  The 

sensor is capable of sending both raw and gyro stabilized data and can be hard iron calibrated to 

account for variations in the magnetic field caused by surrounding equipment.  The Superstar II 

GPS receiver provides latitude, longitude, and altitude (from sea level) position at 5 Hz.  The 

Superstar II GPS is also Wide Area Augmentation System (WAAS) capable which allows the 

system to receive correction data without being locked to a ground station.  Velocities are 

obtained through calculations using both the GPS and IMU supplied data and are described in 

detail in Section 5.4. 
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Figure 7: Superstar II GPS (left) and Microstrain 3DMG-X1 IMU (right) 

 

3.2.4 Takeoff & Landing Sensor 

 

Although positional data provides information regarding the location of a vehicle, it 

cannot supply positional details about other objects.  This becomes an issue when attempting to 

autonomously takeoff or land a vehicle.  Takeoffs and landings require that the locations of 

external objects such as the ground or landing platforms be known with a high degree of 

accuracy.  This information allows the controlling system to know when certain maneuvers are 

and are not appropriate.  An example of this would be to limit the lateral and longitudinal 

movements when the vehicle is within inches of the ground.  Excessive movements could cause a 

tail or main rotor strike which would severely damage the vehicle.   

Obtaining information regarding the vehicle’s relative position to a landing surface is 

typically determined in one of two ways.  First, the vehicle can simply assume that the altitude of 

the landing surface is known.  This could be as simple as assuming that the landing surface is at 

the same altitude as its takeoff location.  Also assuming that the vehicle’s positional data is 

extremely accurate the vehicle could simply mark an altitude as ground level.  This altitude could 

then be directly used to guide the vehicle through the takeoff and landing routines.  Although this 

is the simplest method its assumptions are rarely valid. 

The second method is to allow the vehicle to sense the location of the landing surface.  

This type of range data can be acquired using stereo vision, optic flow, infrared sensors, sonar, 

radar, planar lasers, etc.  Vision algorithms such as optic flow and stereo vision have shown great 

advancements in recent years but are still considered highly error-prone in outdoor dynamic 
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environments [20, 62, 83].  Sonar and infrared type sensors are by far the lightest and cheapest of 

these devices but only provide distance in a single dimension and are commonly disrupted by 

uneven terrain, color, and texture.  Radar by far provides the widest range of distance 

measurements but due to its technology is typically too heavy for use on a MUAV vehicle.  

Scanning/Planar lasers provide multiple distance readings over a two dimensional plane but are 

typically disrupted by both direct sunlight and heavy vibration.  Scanning/Planar laser are also the 

most expensive of the range devices. 

Although the USL vehicle utilizes GPS to determine altitude, the accuracy of this device 

is highly restrictive.  GPS devices similar to USL’s have shown altitude errors of three to five 

meters [92].  This level of accuracy prevents the vehicle from being able to safely and 

consistently land under computer control.  To assure that the USL testbed is capable of both 

takeoff and landing it is equipped with the URG-04LX scanning laser, see Figure 8.  This sensor 

provides the processing system with range information vital to both takeoff and landing.  The 

laser is capable of providing range data of up to four meters with single millimeter resolution at 

10 Hz.  This data allows the testbed to directly determine its relative position to the ground and 

allows the system the capability to land and takeoff at varying locations. 

 

 
Figure 8: Hokuyo URG-04LX Laser Range Finder 
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3.2.5 Electrical Power 

 

Battery selection, although fairly limited, does contain a few pitfalls that must be 

addressed.  Currently several variations of battery chemistry are available on the market.  The 

most popular of these are Nickel-cadmium (NiCa), Nickel-metal hydride (NiMh), and Lithium 

Polymer (LiPo).  NiCa is the oldest, most widely available, and cheapest of these chemistries but 

provides the lowest power to weight ratio.  NiMh is a somewhat newer technology, provides 

greater power to weight ratios than NiCa, and is priced moderately higher than NiCa.  LiPo has 

by far the highest power to weight ratio, three times greater than NiMh and four time greater than 

NiCa [13], but is the most expensive of the three chemistries and potentially explosive when used 

improperly.   

The USL testbed helicopter utilizes four distinct batteries, Figure 9.  The first and largest 

of the four batteries is responsible for powering the helicopter’s electric motor.  The utilized 

battery is a 37V 10Ah LiPo and weights approximately 2.19 kg.  Due to the strict payload 

limitations of electric MUAV helicopters, they are typically limited to the use of LiPo batteries.  

Also note that this battery was specifically ordered to fit within the stock enclosure provided by 

the Joker-Maxi II helicopter.   

The second battery utilized by the USL testbed is a 4.8V 2.0Ah NiMh which provides 

power directly to all servo motors and to the RC receiver.  Note, that this battery could have been 

removed by utilizing the 5V output from the processing system to power the afore mentioned 

devices.  This was avoided for two main reasons.  First, digital high speed high torque servos 

draw a large amount of current when transitioning.  This current is constantly in fluctuation and 

can cause a short, but significant, drop in voltage.  This drop in voltage may adversely affect 

other components on the testbed.  Second, setting up the system in this manner would directly 

link the operation of the vehicles servos to the operation of the processing system.  In the event 

that the processing system’s battery became depleted during flight the safety pilot would be 

unable to retake control of the vehicle.  For these reasons the 4.8V is solely responsible for 

powering the servos and radio receiver. 

The third battery used on the USL testbed is an 11.1V 0.5Ah LiPo.  This battery is only 

responsible for powering the SSC.  Although the SSC could also have been powered directly by 

the processing system’s power supply, it was decided, for safety, that the SSC have its own power 

supply.  This assures that the SSC will operate properly regardless of the state of the processing 

system or its battery. 



www.manaraa.com

 

 

26

 
Figure 9: USL Testbed Batteries 

 

The last battery on the USL testbed is an 11.1V 4.2Ah LiPo battery.  This battery is used 

to power the on-board processing system and all internal and external sensors. 

 

3.2.6 Data Processing Board 

 

Of all the components to be selected for the development of a MUAV helicopter testbed 

the most difficult is the main processing board.  This is mainly due to the abundant variations of 

form factors and types and number of available peripherals.  Processing boards come in many 

shapes and sizes and can be COTS or designed in-house.  Popular form factors of processing 

boards include PC-104, Mini and Nano Integrated Technology Extended (ITX), and Advanced 

Technology Extended (ATX).  Along with variations of form factor, one must decide on the 

desired types and number of peripherals.  Popular peripherals include Universal Serial Bus 

(USB), Recommended Standard 232 (RS232), Recommended Standard 422 (RS422), Transistor-

Transistor Logic (TTL), parallel, Firewire (IEEE1394), Ethernet, Super Video Graphics Array 

(SVGA), infrared, Peripheral Component Interconnect (PCI), and Mini-PCI, to name a few.  

Although each form factor for the main processing board, from a high level, essentially 

performs the same functions, a hasty choice may significantly increase the effort required to 

install, develop software for, and power.  PC-104 based processing systems are at least 9.0 x 9.6 

cm printed circuit boards that are stacked for inter-connectivity.  Each individual board typically, 

37V 10Ah 

11.1V 4.2Ah 

11.1V 0.5Ah 

4.8V 2Ah 
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but not always, has a single function including I/O interface boards, CPU boards, power supply 

boards, and wireless networking boards.  These allow the user to mix and match the desired 

abilities of the overall processing system.  PC-104 boards also tend to have more support for 

hard-realtime OSs.  Although their size and modularity make PC-104 form factors very attractive, 

they do tend to utilize less than state-of-the-art technology and are typically more expensive than 

the other available form factors.  ATX, although the most heavily utilized form factor, is 

generally reserved for desktop type computers and is typically too large, too heavy, and requires 

too much power to operate on a MUAV.  Mini, 17 x 17 cm, and Nano, 12 x 12 cm, ITX form 

factors appear to be the medium between the PC-104 and ATX form factors.  These boards 

provide a more energy efficient and compact form factor than the ATX while providing more 

state-of-the-art technology than PC-104. 

When deciding on peripheral interfaces one should generally take into account the type of 

equipment used on MUAVs and the overall most common interfaces.  Since most sensors 

designed today utilize either RS-232 or USB, it would beneficial to assure that the chosen 

processing board have several of these integrated into the system.  Peripheral choice, although 

important, is typically eased by the abundance of converters and adapters available that allow the 

user to plug almost any device into any port.   

The USL testbed is equipped with a G5M100-N Mini-ITX motherboard, Figure 10.  This 

motherboard was chosen based on its type and number of peripheral interfaces (Table 5), support 

for a low power processor (Pentium M), overall size, and low cost. 
 

Table 5:  G5M100-N Interface Support 

Port Type # Available Interface Type 

   

USB 6 4x 5 Pin Standard, 2x Board Pinout 

Serial 3 2x RS232, 1x RS232/RS422 

Ethernet 2 RJ45 

VGA 1 VGA 

PS2 2 1x Keyboard, 1x Mouse 

PCI 1 PCI Slot 

Mini-PCI 1 Mini-PCI 

IDE 2 1x 40 Pin IDE, 1x44 Pin IDE 

RAM 2 PC 2700 
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Figure 10: G5M100-N Mini-ITX Motherboard’s Top View (top) and Front Panel (bottom) 

 

3.2.7 Communication 

 

For the purpose of this dissertation communication refers to any wireless transfer of 

information from the UAV to any disconnected system.  This includes data transferred via the 

radio controller, on-board processing system, and video transmitter.  Although there are hundreds 

of variations of communication protocols, only a few are commercially available and even fewer 

are not restricted by the Federal Communications Commission (FCC) [93].   

To date, publicly accepted and commercially available forms of wireless communication 

include aeronautical radio navigation, maritime mobile, TV and FM broadcasting, and satellite.  

Although all of these communication devices are available commercially, many frequencies 

typically require special authorization by the FCC and are restricted in the locations in which they 

can be used.  Furthermore, the FCC typically restricts the power outputs of devices that do not 

require FCC permission for operation. 
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For hobbyist type RC aircraft the typical frequency is 72 MHz, ranging from 72.010 MHz 

(channel 11) to 72.990 MHz (channel 90).  This frequency is utilized by the radio controller to 

transmit PWM request to the vehicle.  This data is received by the radio receiver and converted 

into PWM signals distributed to the appropriate servos.  In the case of the USL testbed, the 72 

MHz frequency is also used to grant or remove control of the vehicle to and from the on-board 

computer.  More recently there have been several models of radio controllers and receivers that 

utilize a 2.4 GHz frequency.  The 2.4 GHz frequency is also utilized by the 802.11 and Bluetooth 

protocols as well as many cordless phones.  Make note that the wide use of the 2.4 GHz 

frequency could potentially cause radio control failure and should be utilized with caution in 

industrial or residential areas. 

Utilization of distinct wireless frequencies for video transmission is currently extremely 

popular on UAVs.  This is mainly due to the bandwidth required to wirelessly transmit high 

quality streaming video.  To date there are several non-regulate variations of wireless video 

transmitters being utilized by MUAVs.  These devices typically operate on the 900 MHz, 2.4 

GHz, and 5.0 GHz frequencies and are typically used to relieve bandwidth limitations imposed on 

the 802.11 protocol.  The main differences between the varying frequencies are the average 

operational distances, which also varies based on power output, and the amount of bandwidth 

available. 

It should be noted that is very typical to see a variety of communication protocols used 

beyond the frequency domain.  Critical information such as object identification and internal state 

data must not be lost during transmission.  This data can be sent utilizing protocols that guarantee 

the receipt of data in the correct order, i.e. TCP.  For other information, such as streaming video, 

it may be more critical to receive the most current data rather then delaying it to assure that 

previous transmissions were received.  This type of data is typically sent utilizing non-guaranteed 

protocols such as UDP.  Non-guaranteed protocols also offer the advantage of heavily reduced 

overhead but do not guarantee that data is received or is in the correct order. 

The USL testbed is equipped with an Intel Pro 2200 Mini-PCI wireless card that allows 

the on-board processing system to communicate with any computer network operating on the 

802.11 protocol, Figure 11.  The testbed is also equipped with a 72 MHz receiver that receives 

commands from the radio controller.  The last piece of communication hardware present on the 

USL testbed is the wireless video transmitter.  This device transmits all video, via the 900 MHz 

100 mW transmitter, to any receiver within broadcast range. 
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Figure 11: Intel Pro 2200 with External Antenna and Pigtail 

 

3.2.8 Camera 

 

Although an on-board camera is not required for effective autonomous flight it would be 

severely limiting to a developmental testbed to not include one.  Commercial cameras are 

available that utilize multiple interfaces including Firewire (IEEE1394), USB, and composite and 

vary greatly in size, weight, accuracy, and cost.  When developing a MUAV testbed one must 

take into account several limiting factors of camera during the selection process.   

First, due to the payload limitation of aerial vehicles one must consider the payload loss 

for a particular camera.  This includes the weight of the camera and the weight of the extra 

electrical power required to operate the camera.  One must also consider the mounting location of 

the camera.  If the camera is mounted towards an extremity of the vehicle it must be compensated 

for with a counter weight which will further deplete the payload of the vehicle. 

The second item that must be considered is the camera’s ability to function correctly in 

its operational environment.  Aerial vehicles typically experience high frequency vibrations and 

large gravitational forces as well as operate in varying light intensity environments.  One issue to 

consider is the camera’s ability to compensate for varying light intensities.  Several models of 

cameras have automatic iris compensation that attempt to control the amount of light entering the 

lens while others attempt to compensate for light exposure through software.  One must also be 

aware that aerial vehicles typically do not operate at fixed altitudes.  As such the designer must be 

aware that the camera may need to be periodically zoomed or focused. 

Last, one must consider the interface utilized by the camera.  Firewire cameras have 

become extremely popular due to their compact size, high data rates, and ability to easily daisy 

chain multiple cameras.  Although very well suited for MUAVs, Firewire cameras are typically 
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expensive, somewhat difficult to interface with, and are not always supported by the OS.  USB 

cameras allow for a very common interface and are typically moderately priced but are difficult 

to interface with in most OSs.  Composite cameras are by far the most heavily commercialized 

cameras.  Composite cameras are typically small and fairly inexpensive but require frame 

grabbing hardware to utilize correctly. 

The USL helicopter testbed is equipped with a Sony FCB-EX980S block camera and 

IVC-200G frame grabber, Figures 12 and 13.  The block camera supports auto stabilization, 26x 

optical zoom, low-light operation, and iris/zoom/focus control via an RS232 interface all in a 230 

gram 5 x 5.7 x 8.3 cm (wxhxd) package.  Interface with the device requires both a conversion 

board and frame grabber.  The conversion board, model IFB-EX232, allows for powering of the 

camera and RS232 based control.  The PCI frame grabber allows for data acquisition at 30 frames 

per second on four channels simultaneously.  Note that the frame grabber is shipped with standard 

BNC connectors as the interface.  These connectors were removed and replaced with female RCA 

connectors, see Figure 13.  

 

 
Figure 12: Sony FCB-EX980S Camera, Interface Board, and Video Transmitter 
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Figure 13: Frame Grabber Before (left) and After (right) Interface Alteration 

 

3.2.9 Data Storage 

 

Data storage, in reference to the proposed testbed, describes the area or device where the 

OS, data acquisition software, control software, and collected data are stored.  The most common 

data storage devices include magnetic drives, magnetic disks, and solid state memory.  Although 

magnetic drives and disk are the cheapest, per gigabyte, they require mechanical devices to read 

and store data.  This not only limits the speed at which data can be stored and retrieved, it 

requires that the device be virtually stable at all times to prevent damage to the device.  This 

coupled with the size and weight of magnetic devices typically prevents their usability on 

miniature autonomous vehicles. 

Solid state memory, due to its size, weight, and operational characteristics, is the typical 

utilized device for data storage on MUAVs.  One major short coming of solid state memory is its 

degradation due to usage.  Individual sectors of solid state memory are typically only good for a 

few hundred thousand writes.  Although this seems sufficient for almost any system one must 

consider that many OSs utilize permanent storage as virtual memory and may perform thousands 

of write operations during a single procedure. 

Data storage for the USL testbed is handled utilizing both solid state memory, in the form 

of a USB thumbdrive, and volatile Random Access Memory (RAM).  The solid state memory is 

used to store the OS and any software necessary to make the system functional, including device 

drivers and communication protocols.  The testbed is first booted from the USB drive where the 
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operating system is copied to a RAM drive, sometimes referred to as a virtual drive.  From this 

point all data storage is performed on the virtual drive.  This allows the USB drive to be removed 

from the system after bootup preventing its loss or damage during vehicle operation.  This also 

allows for a modular hardware design where alterations to the platform, sensors, or software only 

require the system to be rebooted utilizing a properly configured USB drive. 

 

3.2.10 Hardware Chassis 

 

The hardware chassis refers to the frame to which all of the hardware is mounted.  This is 

of special interest as the chassis is responsible for protecting the hardware as well as providing 

the necessary frame for successful operation.  There are several key features that one must be 

aware of when designing a chassis for sensors and processing hardware. 

First, helicopter based platforms naturally create high frequency vibrations caused by the 

motor, main rotor, and tail rotor.  This vibration, if not isolated, will create noise, error, and 

possibly damage to hardware mounted to the platform.  For these reasons it is advisable that some 

type of vibration isolation or reduction be built into the chassis.  This would be similar to the 

suspension system built into modern vehicles to reduce road vibration.   

Second, as previously mentioned MUAVs have low payload capabilities thus a hardware 

chassis must balance the desire for stability and protection with the lifting capabilities of the 

platform.  This can be accomplished through the use of alloys such as titanium or aluminum. 

Last, sensors such as magnetometers, typically used to sense heading, are heavily 

influenced by magnetic fields and ferrous materials.  This can include sensors, batteries, 

actuators, electrical current, and metal objects.  With this in mind one must not only assure that 

sensors, like magnetometers, are mounted in areas that isolate them from interference but that the 

hardware and chassis used to mount these sensors do not create interference.  Typically materials 

that do not adversely affect magnetometers are Styrofoam, wood, plastic, aluminum and brass. 

The USL helicopter utilizes custom designed aluminum skids for the hardware chassis, 

see Figure 14.  Aluminum allows the chassis to be lightweight and sturdy without adversely 

affecting the Microstrain IMU utilized on the vehicle.  The tubular design also adds to the 

strength of the chassis.  The chassis contains two distinct layers of vibration isolation mounts.  

The first layer separates the chassis from the platform utilizing four rubber isolation mounts.  The 

second layer isolates the processing system and sensors from the chassis again using rubber 

isolation mounts.  Specific dimensions for the chassis are provided in Appendix C. 
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Figure 14: USL Hardware Chassis 

 

One should also note the mounting location of the Microstrain IMU.  The IMU is 

suspended two inches below the enclosure.  The benefits of choosing this mounting location are 

three fold.  First, this location separates the sensor from the rest of the system which in turn 

reduces the possibility of magnetic interference sensed by the IMU’s magnetometers.  Second, for 

the IMU to provide the most accurate angular rates, accelerations, and heading data it should be 

mounted as close to the rotational axis of the vehicle as possible.  The chosen mounting location 

allows the IMU to be mounted directly below the main shaft of the helicopter which is also the 

rotational axis for heading changes.  Last, vibration isolators typically require a minimum load to 

successfully isolate vibrations.  The extreme light weight of the IMU is not sufficient to isolate 

the helicopters vibrations using the desired materials.  Thus this mounting location allows the 

IMU to utilize the weight of the enclosure and all of its components to create the necessary load 

for sufficient vibration isolation. 

 

3.2.11 Pan/Tilt 

 

To adhere to the design of a highly usable developmental testbed the USL helicopter is 

equipped with a pan/tilt unit that allows the camera direction to be moved without altering the 

position and heading of the helicopter, see Figure 15.  The pan/tilt is custom built and integrated 
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Figure 15: Pan/Tilt 

 

into the hardware chassis.  The pan/tilt is equipped with two low profile Futaba servos and allows 

the camera more than 60 degrees of motion in both pan and tilt.  Design specifications for the 

pan/tilt are provided in Appendix D. 

 

3.3 Assembly 

 

To assure that the USL development testbed can be fully replicated this section details the 

assembly of the hardware and describes system components that may have not been detailed in 

the previous sections.  This section does not detail the assembly of the platform as it is described 

in great detail in the manufacture provided assembly and setup manuals.  This section also 

assumes that the user has some basic knowledge about computer assembly including how to 

properly handle Electrostatic Discharge (ESD) and basic safety.  

To simplify the assembly of the testbed the hardware components are divided into 

groups.  Assembly within each group is described in great detail.  Several of the following sub-

sections will include an overview diagram detailing the hardware described within that section 

(green) and connections with other groups of hardware (blue) described in other sub-sections.  

Note, the red blocks within the diagram are not discussed in detail since they fall outside the 

scope of this dissertation. 
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3.3.1 Enclosure 

 

As the enclosure is the storage and interface unit for the majority of the hardware it is the 

most logical place to begin assembly descriptions.  The enclosure consists of a custom built 

wooden box sealed with EMI foil.  A schematic providing all measurements for the enclosure can 

be found in Appendix E. 

Assembly of the custom box is first performed by cutting out the six sides of the box 

from a sheet of basswood.  The six sides include the lid (225 x 181 mm), bottom (225 x 178 mm), 

faceplate (61 x 225 mm), back (58 x 225 mm), and two short sides (58 x 175 mm).  One of the 

long sides is then stenciled and cut to be used as the faceplate for the enclosure, refer to Appendix 

E for measurements.  This faceplate is the medial interface for all outside devices.  The four sides 

and bottom are then assembled and glue together with standard wood glue.  Note that the back 

and two sides are assembled on top of the bottom plate making the inside dimensions of the box 

219x175x58 mm. 

The next step in assembling the enclosure is to coat the box using EMI foil.  Although 

any method will work one must assure that there is a continuous electrical circuit covering the 

entire box.  Thus, our method includes having as few distinct strips of foil as possible.  The 

enclosure uses one continuous sheet of foil to cover the faceplate, bottom, back, and top of the 

enclosure.  This method also serves as a virtual hinge for the lid to open and close.  To assure that 

the foil does not tear with persistent opening and closing of the lid the foil is reinforced with 

masking tape along the hinge.  A second sheet of foil is used to coat the remaining sides 

providing a second coat on the bottom of the enclosure.  The last step in coating the enclosure is 

to use three small strips of EMI foil to seal the three unconnected sides when the lid is closed.  

This last step is only performed when the hardware has been installed and the enclosure is ready 

to be mounted to the chassis, discussed in Section 3.3.5. 

 

3.3.2 Laser 

 

Once the enclosure has been assembled it can be fitted with hardware.  The first piece of 

hardware to be mounted to the enclosure is the laser.  Due the sensitivity of the laser and the 

desire to prevent damage to this sensor it is mounted directly to the enclosure.  This allows the 

laser to take advantage of the two layers of vibration isolation used to stabilize the enclosure and 

IMU. 
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Figure 16:  Laser Hardware Connection Diagram 

 

The first step in mounting the laser is to drill two small mounting holes diagonally along 

the left side of the box.  The laser can then be mounted using two flush mount bolts.  To assure 

the mounting hardware does not back off over time a small drop of blue loctite is applied to both 

bolts.  Once the laser is correctly mounted to the side of the enclosure two small pieces of 

electrical tape are used to cover the exposed bolt heads. 

The laser will ultimately be connected to the processing system via a mini-B to Series 

“A” USB cable plugged into one of the four available ports located on the enclosure’s faceplate, 

see Figure 16.  Power for the laser is supplied via the 5V power output available on the SSC 

interface board and is transmitted via a custom power cable (Futaba-J male to PHR-8). 

It is noteworthy to mention that URG-04LX Laser is designed for indoor use.  Through 

experimentation it was determined that the laser could provide correct results outdoors.  The only 

noticeable failure was an intermittent shutdown of the laser during extreme exposures to direct 

sunlight.  To account for this problem a layer of black electrical tape is placed over the top half of 

the laser.  This shielded the laser from direct sunlight and removed the intermittent shutdown. 

 

3.3.3 Processing System 

 

The next step in equipping the enclosure with hardware is to assemble and mount the 

processing system.  The processing system hardware consist of the motherboard, CPU with fan 

and heatsink, system memory, power supply, wireless card, 2.4 GHz antenna w/ cable, frame 

grabber, power switch, and flexible PCI extension cable.  Figure 17 details the connection 

diagram used for the processing system hardware. 
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Figure 17:  Processing System Hardware Connection Diagram 

 

The first step in assembling the processing system is to install the major components onto 

the motherboard.  This consists of installing the CPU, system memory, mini-PCI wireless card, 

heatsink, and fan to the mini-ITX motherboard.   Due to the standard snap in interfaces of the 

motherboard, the assembly of the CPU, system memory, and mini-PCI wireless card consist of 

snapping them into the correct slot.  Installation of the fan and heatsink is also straight forward 

but one must assure that a thermal paste is applied between the CPU and heatsink to assure proper 

conduction of heat. 

Once this is complete the motherboard can be mounted within the enclosure.  This is 

performed by angling the board, faceplate first, into the enclosure and sliding the front panel of 

the motherboard into the enclosure faceplate.  Adhering the motherboard to the enclosure requires 

drilling holes at the four mounting locations.  This can be done using a hand tool to assure that the 

motherboard is not damaged.  Since the interior of the enclosure is nonconductive it can be 

affixed without spacers.  This is done using four flat headed plastic bolts and four nuts.  Note that 

the bolts should protrude into the box.  Either a small drop of hot glue or a second set of nuts can 

be used to assure that the mounts do not loosen over time. 
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Once the processing system has been mounted, the 2.4 GHz wireless antenna, cable, and 

main power switch should be installed.  The wireless cable is simply plugged into the main 

antenna connector on the mini-PCI card and then mounted to the right side of the enclosure.  The 

antenna can now simply be screwed on.  The power switch is mounted by forcing it through the 

opening in the enclosure’s faceplate and is naturally held in place by its retention clips.  The 

power switch should then be plugged into the back of the motherboard. 

The power supply, although not electronically modified, did receive several connector 

alterations to fit our constraints and thus should be modified before being installed.  First the DC 

input connector must be removed.  It will later be replaced with an Ultra Dean connector, Section 

3.3.5, but at this point should be left without a connector.  Second, the outer most LP4 connector 

is removed and replaced with two male Futaba-J connectors.  These Futaba connectors 

corresponded to the 12V and 5V power outputs on the enclosures faceplate.  At this point the 

power supply can be installed simply by plugging it into its appropriate interface on the 

motherboard. 

The next step in assembly is to install the PCI frame grabber.  As mentioned in Section 

3.2.8 the BNC connectors, standard on the PCI frame grabber, were removed and replaced with 

RCA connectors.  This is done to reduce the overall size and weight of the board as well as to 

provide a more common interface.  This is accomplished by cutting both the signal and ground 

wires on the back of the BNC connectors just above the PCB.  Once this is complete a flat head 

screwdriver is placed under the BNC connector and used to pry it off of the frame grabber.  The 

mounting rods, ground pins, and signal pins were then heated and removed from the board.  Next, 

four individual strips of coaxial cable were soldered to both the frame grabber and a strip of four 

phono jacks.  

To reduce the amount of unused space within the enclosure it was determined that the 

PCI frame grabber be installed horizontally.  Initially a 90 degree PCI riser was selected but due 

to the configuration of the RAM and the desired compactness of the enclosure it was insufficient.  

Thus a 3in flexible PCI riser was selected.  This allowed the PCI frame grabber to be mounted 

horizontally but also to be shifted into a more compact position. 

Physical installation of the frame grabber first included plugging the PCI riser cable into 

both the frame grabber and motherboard.  The cable is then shaped to allow the frame grabber to 

slip in-between the RAM and front panel components.  To assure that the frame grabber did not 

sit directly on the motherboard a small, non-conductive, piece of foam is hot glued to the 

underside of the frame grabber.  This piece of foam is designed to act as a standoff between the 
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frame grabber and the chipset heatsink on the motherboard.  Next, the four phono jacks were 

mounted to the faceplate of the enclosure using two plastic screws and nuts.  Last, a 1.5 cm wide 

brace is epoxied across the enclosure.  This assures that the frame grabber is held in place during 

operation. 

 

3.3.4 GPS 

 

With the processing system successfully mounted within the enclosure the GPS hardware 

can now be installed.  The GPS hardware consists of a Superstar II GPS receiver, a TTL to USB 

converter, a 5V 1A voltage regulator with heatsink, and pigtail cable, Figure 18. 

The Superstar II GPS is a 5V receiver with two main connectors, a 20 pin terminal strip 

(Samtec TMM-110-03-T-D) and an MCX.  The terminal strip connector is the interface for 

output data and power connection.  Correct functionality of the receiver requires that a regulated 

5 volts be supplied to the main power pin and, if utilizing a powered antenna, to the antenna pin.  

Power for this connector is supplied via a 3 pin 5V 1A regulator.  At this point the regulator 

should be wired with two sets of power and ground wires.  The first set should be wired to the 

receiver and should supply a regulated 5 volts.  The second set of wires should be left 

unconnected but will be directly wired to the main battery in Section 3.3.5.  The regulator will be 

wired this way to allow the GPS to function regardless of the state of the processing system.  This 

allows the GPS to gather satellite data before powering the processing system and allows the  
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Figure 18:  GPS Hardware Connection Diagram 
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receiver to retain a satellite fix in the event the processing system must be restarted.  The 

regulator is then attached to a 1.5 x 3.5 x 0.2 cm sheet of aluminum used as a heatsink.  To assure 

that regulator’s pins did not wear with age they were coated with epoxy.  Last, the regulator and 

heatsink were sealed with PVC heat shrink to protect them from possible short circuiting. 

The transmit, receive, and data ground pins on the receiver’s terminal strip are used for 

interfacing the receiver and the processing system.  Since the processing system cannot directly 

interface with the TTL communication standard used by the receiver, all communication is 

performed through a TTL to USB converter.  The transmit, receive, and ground pins are wired 

directly to the TTL to USB converter board.  This converter connects directly to one of the 

available USB pinouts on the back of the motherboard.  To interface the converter (mini-B USB) 

to the motherboard’s pinouts (2 x 5 pin header) an adapter cable was manufactured.  This cable 

utilizes a 2x5 pinout connector, supplied with the motherboard, and a mini-B USB cable.  The 

mini-B USB cable is first cut leaving approximately six inches of cable.  The 2x5 pinout 

connector is then removed from the supplied cable and soldered to the open end of the mini-B 

USB cable.  Note that the 2x5 pinout connecter supplies interfaces for two USB devices.  The 

second interface will be utilized in Section 3.3.5.  

The second connection required for operating the GPS receiver is the antenna connector.  

Due to the desire to have all external devices connect to the faceplate of the enclosure, a 6 in 

MCX to SMA female pigtail is used to connect the GPS receiver to the faceplate.  The GPS 

antenna is affixed to the horizontal fin on the tail boom of the helicopter using servo tape and can 

be connected to the enclosure after the chassis is assembled in Section 3.3.6. 

Now that the GPS receiver is wired, it must be shielded from radio interference.  The first 

step in shielding the receiver is to encase the receiver in PVC heatshrink and seal the ends with 

electrical tape.  The only opening is a small hole at the front of the receiver just largest enough to 

allow the interface cables to pass through.  This step provides a layer of protection for the 

circuitry.  Next, the receiver is coated with EMI foil.  The EMI foil is wrapped around the 

receiver and the excess is folded over on both ends to prevent as much RF leakage as possible.  

Note that there must be some overlap on the ends of the foil so that a good circuit can be made.  

Last the receiver is again encased in PVC heat shrink which is again sealed on the ends by 

electrical tape.  This provides a layer of protection for the circuitry external to the receiver.  An 

assembled GPS system is detailed in Figure 19. 
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Figure 19:  Partially Assembled GPS System 

 

Last the receiver is mounted to the back left corner of the enclosure.  This can be done by 

using two small strips of double sided foam tape. 

 

3.3.5 Servo Controller 

 

The last item to be mounted within the enclosure is the servo controller hardware, Figure 

20, which consist of the Microbotics SSC, an RS232 to USB converter, and the custom two-layer 

PCB, referred to as the SSC interface board, described in Section 3.2.2.  For simplicity, this 

section will refer to numbered blocks that represent sections on the SSC interface board.  These 

blocks are detailed in the interface guide shown in Figure 21. 

The first step in this part of the assembly is to solder all of the required headers and 

connectors to SSC interface board.  Note that there are four distinct types of connectors that must  

 

 
Figure 20:  Servo Controller Hardware Connection Diagram 
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be soldered to the interface board: single sided headers, double sided headers, a male Ultra Dean 

connector, and a 44 pin HD connector.  This assembly first solders all single sided headers, 

blocks 5, 7 and 8.  Note that the pins should be accessible on the outer side of the SSC interface 

board, refer to Figure 6 for visual details.  These connections represent the servo inputs from the 

radio receiver (block 5), the outputs to the servos (block 7), and the SSC power input (block 8).   

Next, the three sets of double sided headers are soldered to the board, blocks 2 and 3.  

Double sided headers, for the purpose of this work, represent headers that have pins for 

connections on both sides of the board.  The three sets of double sided headers represent a 12 volt 

power output (right pins of block 3), 5 volt power output (left pins of block 3), and the RS232 

communication connection to the SSC (block 2).  The two power outputs will allow the 

processing system’s power supply to power external devices.  Internally, the communication 

connection is used to interface the SSC with the processing system.  Externally, the 

communication connection is used to reprogram the SSC if the need arises.  Note that the external 

connection is typically capped.  This prevents the connection from accidentally being used as a 

power supply but also acts as a reminder to the user that the internal interface, used by the 

processing system, must not be in use when the SSC is being reprogrammed.  Having both 

connections to the communication connector active at one time may damage internal and/or 

external hardware. 

 
 

 
Figure 21:  Interface Guide for the Front (left) and Back (right) of the SSC Interface Board 
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The last two items soldered to the interface board are the 44 Pin HD connector (block 6) 

and the Ultra Deans connector (block 4).  The 44 Pin HD connector is simply slid through the 

back of the interface board and each individual connection soldered.  Once this is complete the 

excess ends of the pins can be clipped off.  The Ultra dean’s connector is connected to both the 

main power input for the processing system’s power supply and the input wires for the GPS’s 

voltage regulator, described in the previous section.  This can be done by either splicing the 

voltage regulator wires into the power supply’s input wires or simply by soldering both sets of 

connections to the Ultra Dean connector.  Note that the wires should first be passed through the 

back of SSC interface board and then soldered to the Ultra Dean.  Once this is complete the Ultra 

Dean can be epoxied to the interface board to assure that it remains secure. 

 The SSC can now be attached to the interface board and installed in the enclosure.  This 

is done using three plastic bolts and two nuts.  Note that at least one of the plastic bolts should 

extend through the interface board and into the SSC.  This will prevent the SSC from slipping out 

of the interface board during operation. 

The last step in installing the SSC hardware is to setup the communication link between 

the SSC and the processing system.  This communication operates through the SSC interface 

board via the 3x1 communication header.  Interface between the processing system and interface 

board is handled by a custom cable utilizing an RS232 to USB adapter.  To assure that the 

interface cable is as small as possible the D-sub connector on the adapter is removed.  A male 

Futaba-J connector is then wired to the adapter to be used for the RS232 communication.  Last, 

the open set of connections on the 5x2 connector, described in Section 3.3.4, are wired to the 

USB communication side of the adapter.  Note, that both the GPS and SSC communication 

adapters are wrapped with electrical tape to reinforce their connections and protect their circuitry. 

 Now that the SSC hardware is properly installed the two Futaba-J power outputs from the 

processing system can be plugged into the SSC interface board.  Any loose cables that may drift 

into the fan or become entangled should now be ziptied.  The enclosure can now be sealed as 

described in Section 3.3.1. 

 

3.3.6 Chassis 

 

The next step in assembling the helicopter testbed is to outfit the platform with the 

custom aluminum chassis.  The chassis was designed with two main goals: to reduce the 

vibrational forces on the enclosure and sensors, and to protect the hardware. 
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The chassis is strictly designed from aluminum tubing with the exception of the mounting 

plate for the enclosure, also aluminum.  This design allows the chassis to take advantage of the 

lightweight nature of aluminum and the tensile strength of tubular constructed materials.  

Aluminum is also a non-ferrous metal and will not adversely affect the magnetometers located 

within the IMU.  The chassis should be assembled by a fabrication shop capable of welding 

aluminum and bending 1/2 inch aluminum tubing.  Specific measurements for every component 

of the chassis can be found in Appendix C.   

Once the chassis has been fabricated the first step in assembly is to install all eight rubber 

isolation mounts.  The larger of the two isolation mounts is mounted to the top of the chassis and 

will ultimately be mounted to the helicopter.  The smaller of the two mounts is installed on the 

four tabs located within the chassis.  Next, the enclosure mounting plate should be installed.  This 

is a 300x200 mm aluminum plate with eight mounting holes.  Four of the mounting holes are 

used to connect the plate to the isolation mounts.  Note, that you should not over tighten the 

isolation mounts when bolting down the plate.  If the mounts are over tightened the rubber will 

twist within the mount and it may tear.  The other four holes in the mounting plate are used for 

installing the IMU mounting brackets.   

The IMU mounting brackets are two small S-shaped brackets that allow the IMU to be 

mounted away from the rest of the testbed’s hardware.  Each mounting bracket has two holes on 

one end, corresponding to the enclosure plate’s mounting holes, and one hole on the other end 

used to mount the IMU.  Installation of the brackets includes installing three small strips of 

double sided servo tape between each bracket and the mounting plate and then looping a ziptie 

through the mounting holes and pulling it tight. 

Now that the chassis is assembled the enclosure can be installed.  The enclosure is 

installed using four small pieces of Velcro placed on the bottom of the enclosure and top of the 

mounting plate.  Note that the enclosure’s installation should allow for two inches of clearance 

between itself and the square tubing at the front of the chassis.  This area will later be used to 

mount the processing system’s battery.  Effort should also be placed in assuring that the enclosure 

is centered, as much as possible, under the main shaft of the helicopter. 

The last step in installing the chassis is to mount it to the helicopter.  Two small adapter 

plates were manufactured to allow the Joker Maxi-II to mount to the custom chassis.  These 

plates simply bolt to the stock mounting holes on the helicopter and then extend off of the side of 

the helicopter to be mounted to the chassis.  This design supports remounting of the chassis to  
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various helicopters.  Again, assure that when mounting the helicopter to the chassis that the 

rubber isolation mounts are not over tightened. 

Now that the helicopter, chassis, and enclosure are integrated the helicopter servos can be 

wired to the enclosure.  Servos can simply be plugged into the output block, block 6 in Figure 21, 

of the SSC interface board.  Make note that the wiring harness for the servos may not be long 

enough to reach the enclosure.  If this is the case an appropriate size servo cable extender can be 

purchased or hand made.  Since the USL testbed helicopter utilizes a heading hold gyro, two 

servo connections are required for tail rotor control.  In order from pins one through nine (left to 

right) the connections are: left servo, front servo, throttle, heading hold gyro (3 wires), heading 

hold gyro (1 wire), right servo, pan servo, and tilt servo.  Note that the signal wire, usually white 

on standard servos, must be on the top row of the connectors.   

 

3.3.7 IMU 

 

Now that the IMU mounting brackets have been installed on the chassis the IMU 

hardware can be installed.  The IMU hardware consist of the Microstrain GDMG-X1 IMU and a 

6V 2.5A voltage regulator, see Figure 22.   

The IMU should be mounted to the chassis brackets using two brass bolts, washers, and 

nuts.  Brass is used to mount the IMU as it is a non-ferrous metal and will not adversely affect the 

IMU.  Assure that the communication port for the IMU is pointed towards the front of the 

helicopter.  Verify that the IMU’s X axis, identified by the communication port, is running as 

parallel as possible to the helicopter’s frame.  This will assure that heading measurements are 

accurate.   

The supplied cable can now be attached to the IMU.  To adhere to our standard of power 

connecters the supplied connector for the IMU cable is removed and replaced with a three pin  
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Figure 22:  IMU Hardware Connection Diagram 
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female Futaba-J connector.  Power to the IMU is supplied through the Medusa 6V regulator.  The 

regulator output is fitted with both a female Futaba-J connector and a male Futaba-J connector.  

The male output is used to supply power to the IMU and the female output is used to supply 

power to the camera, discussed in Section 3.3.9.  The input for the regulator is fitted with two 

male Futaba-J connectors.  One of the input connectors plugs directly into the 12V power output 

from the SSC interface board.  The second input connector is plugged into the female Futaba-J 

connector used to power the video transmitter discussed in Section 3.3.9. 

 

3.3.8 Pan/Tilt 

 

The pan/tilt for the testbed mounts directly to the front of the chassis utilizing the 

chassis’s two small strips of square tubing.  This location allows the pan/tilt to take advantage of 

one layer of vibration isolation.  The pan/tilt can be assembled and mounted any time after the 

chassis has been complete.   

The pan/tilt assembly consist of two servo brackets, two camera brackets, four gears, two 

servos, and three servo arms, see Figure 23.  The schematics for the all four brackets and the 

models of the gears can be found in Appendices D & A respectively.  Note that all three servo 

arms are supplied with the servos. 
 

 
Figure 23:  Pan/Tilt Hardware 



www.manaraa.com

 

 

48

 
Figure 24:  Assembled Pan/Tilt Gears (left) and Assembled Servo Brackets (right) 

 

The first step in assembling the pan tilt is to mount the servos to there respective 

brackets.  This first consist of inserting the four rubber standoffs, supplied with the servo, into 

each of the four mounting holes.  Each servo is then mounted to the bracket using two bolts, two 

nuts, and four washers, see Figure 24 for orientation. 

The next step in assembly is to tap the two small mounting holes on the large camera 

bracket.  These 2.5mm holes should be tapped for a 3mm metric bolt.  These mounts will later be 

used to mount the left servo bracket.  Once this is complete the two small gears should be 

mounted the servos. 

Mounting the gears to the servos first requires that the gears be mounted to the supplied 

servo arms, see Figure 24.  This is done by placing the servo arms, face down, on top of one of 

the small gears and then screwing two small screws through the servo arm into the gear.  Assure 

that the screws do not protrude out the other side of the gear.  The gears can now be placed on the 

servos and fastened with the servo supplied bolt.  Note that all four gears were purchased with 

small mounting extrusions on one side.  These extrusions were sanded off to assure that flush 

mounts could be achieved. 

The camera brackets can now be assembled as shown in Figure 25.  This is done using 

two bolts, seven washers, and two nylon nuts.  Note that the bolts should only be tightened 

enough to ensure that the brackets are secure and should not restrict their rotational movement.  

Once the camera brackets are assembled the two large gears should be installed.  Both gears are 

installed and secured using epoxy.  To ensure that the epoxy adheres correctly to both the gear 

and mounting location it should be lightly sanded with rough sandpaper.  The first gear is epoxied  
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Figure 25:  Assembled Pan/Tilt Camera Brackets 

 

to the inside of the small camera bracket over the bolt that extends inward, see Figure 26.   

This is done by placing a thin coat of epoxy on the inside of the small camera bracket and then 

sliding the gear over the washers.  The washers should fit snugly inside of gear.  The gear should 

then be clamped to the bracket and allowed to dry for several hours. 

The second large gear is epoxied to the top of the large camera bracket, see Figure 26.  A 

thin layer of epoxy should be applied to the outer side of the bracket and then the gear should be 

clamped in place.  Assure that the mounting hole in the bracket is aligned with the center hole of 

the gear.  The epoxy should then be allowed to set for several hours. 

 

    
Figure 26:  Assembled Pan/Tilt Camera Brackets with Gears 
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Once the gears are installed the left servo bracket should be installed.  This is done using 

two small 3mm bolts and a small amount of loctite.  Assure that the length of the mounting bolts 

do not interfere with the motion of the lower camera bracket.  Before tightening down the servo 

bracket the servo gear and bracket gear must be correctly meshed.  This is done to prevent 

binding during rotations and is done by placing a sheet of paper between the two gears and then 

pressing them together.  Once the bracket is tightened the sheet of paper can be removed. 

The last step in assembling the pan/tilt is to mount the top servo bracket.  To do this the 

hardware must be mounted to the chassis.  This is done using one large and one small bolt, two 

washers, the remaining servo arm, and two nylon nuts.  The large bolt is first passed through the 

upper camera bracket and gear.  The servo arm, hub towards the gear, and a washer are then 

slipped over the bolt.  The servo arm acts as a brace for the bolt and assures that it is centered in 

the middle of the gear.  The bolt is then passed through the square tubing on the chassis and then 

through the large hole in the top servo bracket.  Note that this bolt should only be tightened 

enough to secure the pan/tilt.  Over tightening this bolt will prevent the pan/tilt from moving and 

will ultimately damage the servos.  The small mounting hole on the top servo bracket should then 

be fasted to the chassis.  At this point one should assure that the two upper gears are correctly 

meshed and then fully secure the small mounting bolt.  Figure 27 details the fully assembled 

pan/tilt. 

 

 
Figure 27:  Fully Assembled Pan/Tilt Mounted to Chassis 
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Figure 28:  Camera Connection Diagram 

 

3.3.9 Camera 

 

The Camera hardware consist of the Sony block camera, interface board, video 

transmitter, and a custom RCA splitter, see Figure 28.   

Assembly of the camera hardware first consists of integrating the interface board with the 

camera.  This is first done by attaching the two supplied camera cables to both the interface board 

and camera.  The remaining two cables are then plugged into the interface board and will be 

wired later in this section.  Now that the interface board is fully connected it can be mounted to 

the camera for security and modularity.  This is done using electrical tape to secure the interface 

board to the top of the camera.  The camera and interface board are then heat shrunk together, see 

Figure 29.   Assure that both sets of unconnected cables are still accessible after heatshrinking. 

Next, the camera cables must be wired to supply power, control, and data output.  

Identification of the appropriate wires can be done using the interface board’s supplied wiring  

 

 
Figure 29:  Assembled Camera Module 
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guide.  The two power wires are first wired to a male Futaba-J connector and then plugged into 

the female output of the 6V regulator described in Section 3.3.7.  The signal ground, transmit, and 

receive wires are connected to a 9 pin D-sub female hub and then plugged into one of the 

available serial ports on the enclosure.  Last the two data outputs, signal and ground, are wired to 

a male RCA connector. 

Due to wireless bandwidth constraints it was decided that the camera’s video be 

transmitted via a video transmitter.  To interface the camera with both the video transmitter and 

on-board processing system an RCA splitter can be made or purchased.  This splitter consists of a 

female phono jack wired to two male RCA connectors.  The phono jack is plugged directly to the 

camera’s RCA connector and the two male RCA connectors are plugged into the first phono jack 

on the enclosure and the input for the video transmitter. 

The video transmitter is mounted to the enclosure’s mounting plate just behind the 

enclosure using servo tape.  The high gain 900MHz antenna is then connected and protrudes out 

the back of the chassis.  Power for the video transmitter is supplied by a coaxial (size M) to 

female Futaba-J cable which is plugged into the free male connector described in Section 3.3.7. 

 

3.3.10 Radio Control Receiver 

 

The radio control receiver is responsible for transmitting control signals from the safety 

pilot to the SSC and is responsible for granting or denying control to the on-board processing 

system. 

The receiver is mounted just in front of the network ports on the enclosure’s mounting 

plate.  Servo tape is used to secure the receiver to the plate.  The last step of this installation is to 

hook the receiver channels to the enclosure’s input channels (block 4 in Figure 20).  This requires 

seven male to male servo cables.   In order from pins one through nine (left to right) on the SSC 

interface board the connections are: channel 8, 1, 2, 3, 4, 5, and 6.  For power, the DSC channel 

on the receiver is connected to the servo power switch on the Joker Maxi-2.  Note that contrary to 

the output channels, described at the end of Section 3.3.6, the signal wires must be on the bottom 

row of the connectors.   
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3.3.11 Battery 

 
The last pieces of hardware to be mounted to the USL testbed are the batteries.  The 

battery hardware consists of a 37V 10Ah LiPo battery, 11.1V 4.2Ah LiPo battery, 11.1V 0.5Ah 

LiPo battery, and 4.8V 2.0Ah NiMh battery, Figure 30.   

The 37V battery is responsible for powering the platform’s main motor and is composed 

of two heat shrunk 18.5V 10Ah batteries.  This battery fits into the frame of the Joker Maxi-2 and 

is secured from the rear by a small Velcro strap.  To supply the platform’s Electronic Speed 

Controller (ESC) with the required 37V a small adapter cable was manufactured in-house.  This 

cable puts the two 18.5V batteries in series and supplies the correct voltage to the ESC.   

The 11.1V 4.2Ah battery is used to power both the GPS receiver and the processing 

system which in turn is responsible for providing power to the remaining sensors.  This battery is 

mounted, using Velcro, to the enclosure’s mounting plate.  It is placed just between the enclosure 

and the square tubing towards the front of the chassis.  Due to the location of this battery a small 

extension cable must be used to reach the SSC interface board.  For safety, a small low voltage 

alarm is wired directly into this extension cable.  This alarm constantly monitors the battery and 

warns the operator when the voltage is reaching a critical level. 
 

Processing System
Motherboard
CPU w/ fan & heat sink
RAM
Power Supply
Wireless Card
Frame grabber

Battery
37V 10Ah LiPo
11.1V 4.2Ah LiPo
11.1V 0.5Ah LiPo
4.8V 1.8Ah NiMh

Helicopter

EnclosureEnclosure

GPS
Superstar II
TTL to USB adapter
Voltage Regulator
Coaxial Pigtail
GPS antenna

Futaba-J
(Front Panel)

Futaba-J
(Front Panel)

Ultra Dean
(Front Panel)

Servo Controller
Microbotics SSC
RS232 to USB adapter
SSC Breakout Board
HD Switch Harness

 
Figure 30:  Battery Connection Diagram 
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The 11.1V 0.5Ah battery is solely used to power the SSC.  This battery is equipped with 

a 3 pin male Futaba-J connector and is mounted to the top of the enclosure using Velcro.  The 

battery is then connected directly to a HCAM2761 HD power switch.  This switch is mounted to 

the chassis using two zipties.  The power output connector of the switch is then connected to the 

SSC power connector on the enclosure’s faceplate. 

Last, the 4.2V 2.0Ah NiMh battery is solely used to power the servo actuators throughout 

the testbed.  This includes powering the platform’s control servos and the pan/tilt servos.  This 

battery is plugged into the Futaba radio receiver via the Maxi Joker-2’s servo power switch.  

Power is then naturally routed from the radio receiver to the SSC interface board where it is 

distributed to all servo connections.  A complete assembly of the testbed is detailed in Figure 31. 

 Before concluding this section, it is noteworthy to mention that LiPo batteries can catch 

fire and explode if not handled properly.  This includes insuring that the individual cells do not 

fall below 3.0V per cell or rise above 4.2V per cell.  If a cell swells or smokes it should 

immediately be considered a fire hazard and disposed of properly. 
 

Figure 31:  Mosaic of the Completely Assembled USL Testbed Helicopter 
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Chapter 4 

Software Architecture 

 

Although the hardware is an integral part of designing an autonomous vehicle testbed it is 

of very little use without corresponding software.  The software architecture described in this 

chapter covers the overall structure of the software developed for the USL testbed.  It also 

discusses the details of the individual processes and how these processes interact to form a single 

entity.  To ensure comprehension most sections are supported by high level pseudocode available 

in Appendix G.  Note that this section does assume some level of comprehension with OS 

installation and operating in the Linux environment. 

 

4.1 Operating System 

 

The OS is the backbone of any software architecture and provides a base for all 

supporting software.  Although almost any modern OS would be sufficient, the USL testbed has 

been strictly operated by Linux distributions.  Linux was chosen due stability, ease of 

modification, and heavy use in both the academic and industrial arenas.  The utilized distributions 

have included multiple versions of Slackware, versions 10.0 through 12.0, and Gentoo.  The 

currently utilized distribution, and the one detailed in this research, is the Slackware 12.0 

distribution.  Slackware was chosen due to ease of installation and ability to install and boot from 

a USB thumbdrive.  Also note that for the USL testbed the OS operates completely out of a RAM 

drive.  Due to the physical limitations of RAM, this requires that the OS be minimal in size to 

allow for sufficient RAM for operating processes. 

 

4.1.1 Development System 

 

To ensure that a version of the operating system and supporting software could easily be 

modified and tested, a developmental computer was created.  This developmental system is an 

exact replica of the enclosure built in the previous Chapter.  The only modifications are the 
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installation of magnetic drive via the 40 pin Integrated Drive Electronic (IDE) slot and a Compact 

Disc Read-Only Memory (CD-ROM) drive via the 44 pin IDE slot.   

Setting up a development system has three advantages.  First, it provides a backup of the 

foundational software and is available in the event that the USB thumbdrive is damaged.  Second, 

it allows us to develop and test new software on an exact replica of the testbed’s enclosure 

without having to constantly copy a new software image onto the thumbdrive.  Last, it allows us 

to co-develop the software for multiple testbeds that utilized this enclosure, which will briefly 

mentioned in Chapter 9. 

 

4.1.1.1 Installation 

 

Once the development system is assembled, the magnetic drive is formatted for two 5 

gigabyte partitions.  The first partition, now referred to as installation A, is installed with 

Slackware’s base and networking packages.  The second partition, now referred to as installation 

B, is installed with Slackware’s base, applications, developmental, kernel source, libraries, and 

networking packages.  This setup allows us to have a complete installation for development and a 

minimal installation that can be copied to a thumbdrive.  To limit the overall size of the OS on the 

thumbdrive several sub-packages were removed during installation.  This is accomplished using 

the menu prompting option for installation and simply required unchecking the appropriate boxes.  

A list of the removed packages is available in Appendix F.  Note that the majority of the removed 

packages are mail programs, raid software, and printer drives.  These were deemed useless for the 

current configuration and thus wasted space. 

 Installation, via a Slackware installation DVD, first required setting up the file system.  

Our installation used the ext2 file system and a 4092 byte inode.  Each installation utilizes a 

single partition which is defined to be the root of the file system.  Once this is complete, the 

desired packages can be selected, as mentioned above, and installed.  From this point on in the 

installation all of the default values were selected.  Note that the networking configuration is not 

setup in installation and will be configured later in this chapter. 
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4.1.1.2 Kernel Setup 

 

Although Slackware provides a pre-built 2.6 kernel it does need to be recompiled to 

support the computer’s wireless card.  Although kernel compiling and installation are beyond the 

scope of this work, an overview of the process is described.   

The kernel source, for the large Slackware installation, is automatically installed and 

placed in /usr/src/.  From within the kernel source directory, the make menu command can be 

performed to provide a graphical interface for updating the kernel.  The only required 

modification to the kernel is to include the Intel Pro 2200 package as a module.  The kernel and 

modules can now be compiled and installed.   

Note that the default kernel provides much more support than is necessary to fully 

operate the testbed’s hardware.  The kernel can be configured to remove these unnecessary 

packages thus providing a smaller OS.  To correctly operate the USL testbed any kernel design 

must support serial devices, USB devices, ACM devices, SSH, networking, and wireless devices. 

Although the kernel now supports the installed wireless card, it will not function correctly 

without the appropriate firmware.  This firmware is publicly available from Sourceforge (sf.net) 

and should be downloaded and installed into the /lib/firmware directory. 

Now that the large installation of Slackware is prepared, the kernel, kernel modules 

(located in /lib/modules), and firmware must be copied from installation B to installation A.  This 

can be done by mounting partition A and copying the kernel image, typically bzImage, modules, 

and firmware to their respective locations on installation A. 

Note that the boot loader should be edited to provide access to both partitions.  This 

should be done by editing /etc/lilo.conf and assuring that an option exists for both installations 

using the new kernel.  Once complete the changes should be committed to the Master Boot 

Record (MBR) by running the lilo command.   

 

4.1.1.3 Networking Setup 

  

The last step in configuring the base software is to setup the communication.  To allow 

the system the freedom to operate without an access point it was decided that communication be 

performed using an ad-hoc network.  It was also desired that an automated network 

reconfiguration be available on the testbed.  To support this, the open source development of  
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Mobile Mesh was selected (available at www.mitre.org/work/tech_transfer/mobilemesh).  This 

software automatically determines the most appropriate route to any client on a dynamic network. 

Once Mobile Mesh is downloaded it should be uncompressed and compiled.  Installation 

instructions are provided with Mobile Mesh and typically only require three commands to 

compile and install (make depends, make, make install).  It should be mentioned that some 

compliers will display error messages when attempting to compile Mobile Mesh.  This is due to 

redundant statements placed within two C classes.  These can be repaired simply by deleting the 

four redundant statements (Debug:: on line 41 of UtDebug.h and String:: on lines 103-105 in 

UtString.h). 

 Now that Mobile Mesh is installed it should be configured to operate on the development 

system.  This first requires modifying the /etc/Mobile Mesh/mmrp.conf file.  This file contains a 

single line that identifies which networking device to utilize, typically eth0 or eth1.  This line 

should be modified to point to the wireless device’s identifier which can be obtained by running 

the iwconfig command.  Next, the Internet Protocol (IP) address, broadcast, and netmask mush be 

setup.  This can be done through the ifconfig command.  The essid and mode, which must be Ad-

Hoc, should also be setup using the iwconfig command.  Note that the essid must be set the same 

for all vehicles and computers requiring intercommunication and should not be the same as any 

wireless router within operating range.  The specific networking setup for the USL testbed can be 

seen in Table 6.  Last the Mobile Mesh software should be initiated using the mmdiscover –i 

[device] and mmrp commands respectively. 

 Through experimentation it was determined that the wireless identifier is inconsistent 

from motherboard to motherboard.  To account for this a small script is added to /ect/rc.d/rc.local 

and is performed towards the end of each bootup cycle.  This script determines the wireless 

identifier, modifies the mmrp.conf file, setups up the IP, broadcast, netmask, essid, and mode, and 

then initiates Mobile Mesh.  This provides wireless connectivity immediately upon completion of 

the boot process.  

 

Table 6:  USL Testbed’s Network Configuration 

Ethernet Port Essid IP Mode Netcast Broadcast 
eth1 Vision15.10.10.109 Ad-Hoc 255.255.255.0 15.10.10.255 
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 Now that the development partition is setup the appropriate files must be copied from 

installation B to installation A.  This includes copying the /etc/Mobile Mesh directory, 

mmdiscover and mmrp commands from /bin, and any scripts that setup Mobile Mesh on boot to 

their corresponding locations. 

 

4.1.2 Booting from the USB 

 

Once installation A is fully functional its image can be copied to a USB device.  This 

USB device will store all of the software necessary to initialize the testbed. 

The first step is to create an image of installation A’s file system.  This is done by 

creating an empty file system large enough to hold the entire partition.  This can be done using 

the dd command to create the file and then formatting the file for ext2 using the mke2fs 

command.  This file system should then be mounted using the -o loop option.  The file system can 

now be loaded with data.  This should be done by copying, cp -a, the bin, boot, dev, etc, home, 

lib, mnt, root, sbin, usr, and var directories from the small partition to the mounted file system.  

The sys, proc, and tmp directories should also be created in the file system but should not be 

copied.  To assure that the boot process is accomplished without error two files must be edited 

within the new file system, /etc/rc.d/rc.S and /etc/fstab.  Fstab must be changed to prevent it from 

attempting to mount a hard drive.  This can be done by changing the root mount point from 

/dev/hda1 to /dev/fd2.  This will force the OS to believe it is operating off of a floppy device.  

Rc.S must be edited to ensure that the ramdisk loads correctly and that the system does not 

attempt to utilize swap memory.  This is done by removing the entire section in rc.S responsible 

for checking the root partition.  This section begins with the “# Test to see if the root partition is 

read-only...” line and concludes with “fi # Done checking root file system” 

The new file system is now completely populated and should be unmounted and 

compressed using gzip and the -c -9 options.  This compressed image should be loaded onto a 

USB thumbdrive, along with the kernel image. 

The last step in creating a bootable USB device is to install the bootloader.  To prevent 

from having to format the USB partition, the Syslinux bootloader was chosen for the USL 

testbed.  This specific bootloader supports booting from File Allocation Table (FAT) partitions 

which are the most common default formats for USB thumbdrives.  Installation first includes 

creating a syslinux.cfg file on the USB stick.  This file contains the booting and kernel  
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instructions.  For clarity the USL syslinux.cfg file is provided in Appendix G.  Last the syslinux 

command should be performed on the device, i.e. syslinux /dev/sda1. 

The USB is now fully configured to boot into a ramdisk on any machine supporting USB 

boot.  Note that booting from a USB device is an option that must be setup in the Basic 

Input/Output System (BIOS) of the motherboard. 

 

4.1.3 Operating System Comments 

 

It should be noted that the bootup time is directly associated with the size of the OS.  The 

configuration shown here will take between 180 and 200 seconds to boot.  This bootup time can 

be significantly reduced if the OS is loaded using the USB 2.0 protocol.  Although the BIOS for 

the USL motherboard only supports the USB 1.1 protocol, it is still possible to significantly 

reduce the bootup time.  This can be done by creating a custom initrd that only loads the absolute 

minimal software for boot.  Once booted the OS, which does support USB 2.0, can uncompress 

and load the remaining sections of the OS.  This method has been tested on the USL testbed using 

the Gentoo distribution and is capable of booting the full OS in approximately 30 seconds. 

As the custom initrd is not required for the testbed to operate correctly its setup is not 

discussed.  The inclusion of a custom initrd is only discussed as to provide information into 

alternative methods. 

  

4.2 Source Code Architecture 

 

Source code, for the purpose of this work, describes all of the in-house developed 

software used to interface with and control the USL testbed.  All of the source code for the USL 

testbed is developed in the C programming language.   

A graphical depiction of the architecture for the source code utilized on the USL testbed 

can be seen in Figure 32.  The levels within the figure describe the directory structure, level one 

being the upper most directory.  The color breakdown of Figure 32 is as follows: 

 

• Green – folder name 

• Blue – source and header files within that folder 

• Yellow – miscellaneous files that will be individually described in the text 

• Orange – subfolders 
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GPS.c
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Imu.c, m3dmgAdapter.c, 
m3dmgAdapter.h, 
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m3dmgErrors.h, 
m3dmgSerial.h, 
m3dmgSerialLinux.c, 
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IMU

Laser.c

Laser

Collect.c

Collect

Inc.c, Inc.h, robot_defs.h, 
robot_motor.c 
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GPS, IMU, Laser, Servo, 
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Collect, Data_test, 
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Figure 32: Directory and File Structure for the USL Testbed 

 

From conception the software for the USL testbed was designed to be highly modular and 

to support an operating structure that could be dynamically modified.  Modularity in the design 

allows for code reuse, quick integration, and ease of understanding.  Dynamic modification 

simply means that the system is able to remove or add functionality during operation.  To support 

these design requirements, software is developed as a set of processes that run concurrently and 

pass information through shared memory structures.  By utilizing this method of development a 

monitoring process can start and stop processes as needed by the testbed.  An example of this 

would be a situation where the process controlling the vehicle is operating at a lower than optimal 

rate.  At this point a monitoring process could shutdown lower priority processes freeing up both 

memory and CPU for the higher level process.  Although this work does not utilize the ability to 

dynamically alter the software structure, support for it is maintained throughout software 

development. 

It should also be mentioned that all of the developed software is written and tested on a 

soft real-time OS.  This means that the OS attempts to minimize delay but does not guarantee run 

time.  Although there is no guarantee of run time there is a reasonable expectation that process 
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will be handled efficiently and should operate within some boundaries.  Using this assumption 

many of the processes were designed to attempt to operate within a given window of time.  If 

they fail to operate within this window they report a warning detailing how excessive their delay 

is.  This is performed using sets of timestamps.  Processes request a timestamp before sleeping 

and then sleep for a fraction of the desired delay time.  When the process wakes it compares the 

current system time to the retained timestamp.  If the amount of time passed is within the 

operating threshold the process performs its required operation.  If the amount of time passed is 

less than the threshold the process again sleeps for a fraction of the remaining time.  Last, if the 

amount of time exceeds the threshold a warning is presented to the operator. 

 Source code for the testbed is typically kept on the ground station’s laptop, a Dell 

Latitude D820.  This laptop utilizes a Fedora Core 6 distribution of Linux and is the primary 

source for non-OS software modification.  During field testing the source code can be modified, 

compiled, and uploaded directly to the testbed.  Note that the GCC compiler, version 4.1.0, is 

utilized to compile all of the software before it is uploaded to the testbed. 

 

4.2.1 Level 1 

 

The Level 1 structure of the software architecture is the root of all source code utilized on 

the USL testbed.  This folder contains a makefile (Makefile), one folder (SRC), all compiled 

executables (GPS, IMU, Laser, Servo, Collect, Data_test, and Navigate) and one script (transfer). 

The makefile is responsible for compiling all of the executables and is operated by typing 

the make command from this directory.  This process will enter all specified subfolders and 

individually compile each process.  Once this is complete, all of the compiled executables will be 

placed in the Heli_Control directory of Level 1.  Although the design of a makefile falls outside 

the scope of this work the utilized makefile on the USL testbed is provided in Appendix G for 

completeness. 

When desired, all the necessary executables, scripts, and fuzzy inference files, discussed 

later in this chapter, can be uploaded to the testbed utilizing the transfer script.  This script simply 

copies the specified files to a predetermined remote destination.  The contents of this script can 

also be viewed in Appendix G. 
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4.2.2 Level 2 

 

The second level of the source code structure contains a single directory, SRC.  This 

directory and its subfolders contain all of the developed source code for the USL testbed.  The 

only source files directly contained within this folder are the Inc.c, Inc.h, Robot_defs.h, 

Robot_motor.c files.  Note that pseudocode for each of these files is available in Appendix G. 

The Inc.c file contains only two functions which are responsible for retrieving the current 

time and determining the amount of time passed between two timestamps.  Note that for Linux, 

time is determined by the amount of time that has passed since midnight on the 1st of January of 

1970.  For accuracy, all time is computed using microsecond precision. 

The Inc.h file contains declarations of the two functions in Inc.c and all of the shared 

memory structures utilized throughout the source code. 

Robot_motor.c contains four functions responsible for communicating with the SSC.  

These four functions are responsible for setting up a connection between the processing system 

and the SSC, sending the desired servo positions to the SSC, calculating the SSC checksum, and 

disconnecting from the SSC. 

The last source file, Robot_defs.h, contains the four function declarations for 

Robot_motor.c and multiple constant definitions.  These constants define the pulse width limits 

and neutral values for the servos and several values for setting up SSC communication.  The SSC 

communication values include the number of servos being controlled and two masking values for 

masking higher order bits. 

 

4.2.3 Level 3 

 

Level 3 is the lowest level of the source code architecture and contains all of the 

remaining source code for the USL testbed.  Note that each directory within this level, with the 

exception of the scripts directory, represents a distinct executable that will be created by the 

makefile in Level 1.  This allows modification of a single process to be constrained to a single 

folder. 

 Although the specifics of each individual file will not be described here, Appendix G 

does provide details through comments and pseudocode.  The remainder of this chapter will detail 

the individual processes created by these files. 
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4.3 GPS Process 

 

The GPS process is responsible for reading and parsing data from the GPS receiver as 

well as placing the data in shared memory.  This process will also inform the user in the event 

that a significant change has occurred in the accuracy of positional data.  Significant changes in 

accuracy are determined by the type of lock acquired and are always one of three states, no lock 

(zero), lock without WAAS correction (one), lock with WAAS correction (two).  Note that the 

firmware for the GPS receiver is configured, using Starview, to continuously output the NMEA 

GPGGA message at 5Hz. 

The GPS process’s main goal is to continually update eight individual values in shared 

memory.  The first seven of these values represent the latitude, longitude, latitude direction, 

longitude direction, altitude, number of satellites, and type of lock as reported by the GPS 

receiver.  The last value recorded to shared memory is a count variable.  This variable increments 

with each newly received string of data from the receiver.  This counter allows processes 

accessing the GPS data’s shared memory to determine if the information available is newer than 

the information already gathered by that particular process. 

The order of operation for the GPS process is first to setup a serial communication 

connection with the GPS receiver.  Once the connection is established the process will create a 

shared memory location for the GPS data and a corresponding semaphore for controlling mutual 

exclusion.  This semaphore, as well as all semaphores discussed in this chapter, assures that no 

other process can access a particular piece of shared memory when it is being accessed by any 

another process.  This prevents processes from retrieving partially modified data.  The GPS 

process then enters an infinite loop where it will continuously read, parse, and store GPS data.  

The only modification performed on the parsed data is that the latitude and longitude are divided 

by one hundred.  This modification formats the latitude and longitude into decimal hours.  After 

each successful post to shared memory the process sleeps for 0.18 seconds.  Make note that 

specific values for sleeping are simply fractions of the time between available data, detailed in 

Section 4.2. 
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4.4 IMU Process 

 

The IMU process is responsible for accessing the Microstrain IMU.  This process gathers 

Euler angles, angular rates, and accelerations at approximately 80 Hz and posts their values, 

along with an associated time stamp, to shared memory.   

The order of operation of this process is to first setup a serial connection to the IMU.  

Once this is performed this process will create the appropriate shared memory and semaphore.  

The process then enters and infinite loop where it will request the appropriate data.  Once the data 

is received the system time is requested.  The sensor readings and timestamp are then posted to 

shared memory.  It should be mentioned that, unlike other processes described in this chapter, 

there is no sleep request in the main function.  This was deemed unnecessary as a sleep process is 

already built into the data acquisition function supplied by the manufacture. 

 As the manufacture supplied source code is not developed by USL it will not be detailed 

in this work but is available directly from Microstrain.  The main function which interfaces with 

the Microstrain supplied source code is detailed in Appendix G.  To fully utilize the IMU a single 

function is added to the manufacture supplied source code.  This additional function is also 

detailed in Appendix G. 

During testing it was discovered that the manufacturer supplied source code contained an 

error that periodically caused the device to fail.  This failure was experienced when the IMU was 

not the first device connected to by the OS or if the device was not properly disconnected from.  

This error was located in the receiveData function in the m3dmgSerialLinux.c file.  Line 319 

which reads n = read(3, &inchar, 1); is attempting to read data from a hard coded file descriptor 

for the IMU.  This line is changed to read n = read(portHandle, &inchar, 1); which attempts to 

read data from the file descriptor that is set when the device is opened. 

 

4.5 Laser Process 

 

The laser process is responsible for gathering range data from the laser to any object 

below the vehicle.  This information will be used for both takeoff and landing.  

Testing of the laser reveled that it is prone to shutting down in the event of heavy external 

light or after an intense shock.  This is noticed during several consecutive takeoff and landing 

attempts and in direct sunlight.  Although these procedures are designed to prevent damage to the 

laser they do not restart the laser to a functional state when the disturbance has resided.  To 
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account for these issues the source code is written with the ability to shutdown and reset the laser 

in the event of a failure. 

The order of operation of the laser process is first to setup a serial communication with 

the laser.  Since communication with the laser is performed via USB, this is accomplished 

through one of the available ACM ports (/dev/ttyACM?).  Once communication has been 

established the process creates both shared memory and a semaphore for the laser data.  The laser 

is then restarted to assure the current state of the laser is known.  The process will then request 

that the laser output range data continuously.  This will provide the laser process with range data 

at 10Hz.  Since the laser is capable of retrieving range data at angles far beyond what is currently 

needed, the data request indicates that only the 16 degrees directly below the laser should be 

retrieved.  This reduces computational time and the required storage area.  The process then 

enters an infinite loop where it will continuously parse the incoming data and place it in shared 

memory.  After each successful receipt of data the process sleeps for 0.09 seconds. 

If, at any point, the laser fails to function correctly the software will attempt a recovery 

process.  The specifics of this process depend on the specific failure message received.  

Generally, a failure will cause the software to request that the laser restart.  If the restart is 

unsuccessful the user is notified of the failure.  Note that unrecoverable failures will cause the 

vehicle to refuse autonomous landing, discussed further in Section 4.10.4. 

 

4.6 Servo Process 

 

The Servo process is responsible for generating packages which will request that the SSC 

move individual servos to particular locations.  It is also responsible for retrieving and parsing 

state data from the SSC.  This data allows processes to determine if the human safety pilot is in 

control or if the on-board processing system is in control. 

Unlike previous processes, the servo process creates three separate shared memory 

locations and three corresponding semaphores.  The first two shared memory locations are 

dedicated to the position requests for the helicopter’s servos and the pan/tilt’s servos.  This is 

done to allow pan/tilt controlling software and vehicle controlling software to be separated.  This 

allows software to move the pan/tilt without blocking the process that updates the vehicle’s servo 

commands.  The third shared memory location is dedicated to SSC state data.  This shared 

memory location stores a single variable which identifies who is providing vehicle control, the 

human operator or the on-board computer.  
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This process first sets up the serial communication, shared memory, and semaphores.  

Once this has been performed the process loads shared memory with neutral values for all of the 

servos.  This prevents residual data in the shared memory from causing unspecified movements in 

the servos.  The process then enters its infinite loop.  Once inside the loop the process will poll 

both sets of shared memory for servo positions and then generate a data package.  A complete list 

of details for SSC package structures can be found in the manufacture provided manual.  Once 

the package is sent to the SSC, the process polls the input buffer for state input from the SSC.  

Since the SSC data output and input are at different rates, 50Hz and approximately 100Hz 

respectively, state data may or may not be available.  Thus, the process attempts to read one byte 

from the file descriptor.  If data is not immediately available the read request will fail and the 

process will abandon its attempt to retrieve state data.  If the read is successful the process will 

read the entire data package and parse it for state information.  This information is then updated 

in shared memory.  At the end of each loop the process sleeps for approximately 0.01 seconds. 

 

4.7 Pan_Tilt Process 

 

The pan/tilt process was developed as a functional template.  The process is fully 

operational but is only coded to hold the pan/tilt in a neutral position.  This was done to support 

quick integration of vision code that may need to control the pan/tilt.  This program, in its empty 

template state, will only connect to the shared memory location created by the servo process and 

output pan and tilt neutral positions. 

 

4.8 Collect Process 

 

The Collect process is responsible for data collection during operation of the testbed.  

This process collects the testbed’s position, orientation, accelerations, approximated velocities, 

control outputs, and SSC state from shared memory and commits them to a file, data.txt, on the 

RAM drive.  Data is collected and stored at approximately 4Hz. 

The execution order of this process first connects to shared memory and then creates an 

empty data.txt file.  Once this is complete the process creates a signal handler responsible for 

closing the text file in the event that the process is terminated.  The process then enters an infinite 

loop that will retrieve data from shared memory, create a timestamp, and output that data to the 

file.  After each successful write to the output file the process will sleep for 0.2 seconds. 
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4.9 Test Process 

 

The Test process is designed to allow the user to test shared memory and sensors prior to 

starting the autonomous navigation software.  This allows the user one final inspection to assure 

that data is being gathered and looks feasible.  During execution this process will output, to the 

screen, the position, orientation, angular rates, and laser range being collected and posted at 

10Hz. 

The execution order of this process first connects to all of the utilized shared memory 

locations and then enters an infinite loop.  While in this loop the process will gather all of the 

required data and output that data to the standard I/O interface, typically the screen.  Note that the 

process only outputs a single laser range value for each loop.  Once the process has gathered all 

of the laser range data requested it will then average that data and output it to standard I/O.  This 

is done for both readability and to smooth any erroneous values from the sensor.  After each 

successful output the process sleeps for 0.1 seconds. 

 

4.10 Navigate Process 

 

The navigate process is the focal point for all of the software developed for the USL 

testbed and is the last process to be started before autonomous flight can begin.  This process sets 

up and interfaces with the fuzzy controllers, calculates positional error and velocity for all three 

axes, fuses data calculated or collected from multiple sources, and filters out noise.  This process 

is also responsible for managing the flight path and stage of the testbed.  

 The navigate process is the only process that requires arguments be given by the user.  

These arguments correspond to takeoff and landing request and are Boolean variables.  If a 

particular action is to be performed, an integer value of one must be supplied as an argument 

otherwise a zero must be supplied.  If a zero is supplied then the testbed assumes that those 

operations will be performed by the safety pilot.  Make note that assumptions are made based on 

these arguments.  For instance, if the helicopter is told to takeoff then it will assume that it is on 

the ground and that the engine is powered down.  Thus, if the helicopter is in the air when the 

vehicle’s state becomes autonomous, the engine will power down. 

Due to its size and complexity this process is broken down into several subsections that 

as a whole describe the overall process.  Figure 33 provides a chart that describes the overall flow 

of this process. 
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Figure 33:  Flow Chart for the Navigation Process 
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4.10.1 Initialization 

 

 Once the navigation process’s arguments have been validated the process begins to 

initialize the system for flight.  This is first done by setting the number and locations of 

waypoints.  Next, the process connects to all of the required shared memory and sets up the fuzzy 

controllers.  The process will then install the signal handler designed to free any structures created 

for accessing the fuzzy controllers.  Last, the process attempts to calculate the gravitational force 

sensed by the IMU.  This must be done prior to takeoff to ensure that errors caused by other 

forces are minimal.  This is done by reading four hundred IMU readings, rotating them to the 

world coordinate frame, and then averaging their values.  This averaged vector will be removed 

from all subsequent acceleration readings.  Note that the number of readings averaged is an 

arbitrary number that attempts to minimize the error in the gravity vector approximation.  With 

respect to the USL testbed, four hundred readings is approximately four seconds worth of IMU 

data. 

 

4.10.2 Takeoff Procedure 

 

The takeoff procedure is broken down into three phases.  These phases are responsible 

for spinning up the motor, prepping the collective, and lifting off the vehicle.  During all phases 

of this procedure the process will continuously gather laser range data, GPS position, and IMU 

data.  Note that prior to lift off this procedure will lock in the current heading, latitude, and 

longitude as the desired heading, latitude, and longitude.  This method assures that the vehicle 

will attempt a completely vertical takeoff and will minimize the possibility of extreme maneuvers 

at low altitudes.  Note that this procedure requires that a GPS lock be acquired.  If a GPS lock is 

not present the vehicle will not begin takeoff. 

 The first phase in the takeoff procedure is to spin up the motor.  First the procedure 

commands the collective and throttle to be low.  Low is meant to convey the lower limit of the 

collective command, negative one, and a throttle value that does not rotate the head, typically a 

1000 microsecond PW.  Note that the conversion of the collective command to a PW value will 

be discussed Chapter 5.  This procedure will now slowly throttle up the motor by increasing the 

throttle’s PW by ten microseconds per control loop until the throttle neutral value is reached.  

Throttle neutral is the throttle PW that turns the main rotor at approximately 1600 Revolutions 

Per Minuet (RPMs).  Once the throttle has reached its neutral value, it is held at this value 
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throughout the remainder of the flight.  Once the throttle neutral value has been reached, phase 

one is deemed complete.  Note that in all phases of the takeoff procedure the fuzzy controllers, 

described in Chapter 6, are controlling the yaw, pitch, and roll as they normally would. 

Phase two is used to prepare the collective to be controlled by the fuzzy controller.  This 

is deemed necessary to prevent a sudden vertical acceleration that would cause unnecessary stress 

on the testbed and may significantly lower the head speed.  Preparing the collective is done by 

slowly increasing the collective command from its minimum value to its neutral value.  The 

neutral value for collective is designed to represent a hovering collective for the testbed and is 

represented by the value zero.  The collective is increased by 0.0025 units until the neutral value 

has been reached.  Once the neutral value has been reached phase two of the takeoff procedure is 

deemed complete. 

 The last phase of the takeoff procedure is responsible for lifting off the testbed.  This is 

accomplished by simply giving control of the collective to the fuzzy collective controller.  

Assuming that the altitude set point is at some distance above the vehicle it will begin to climb.  

Takeoff will continue monitoring the vehicle until the average laser range value exceeds two 

meters.  Once the vehicle exceeds two meters of altitude the takeoff procedure is marked 

complete and the navigation procedure can begin.  Note that the altitude set point is assumed to 

be above two meters.  If the vehicle reaches the altitude set point during the takeoff procedure the 

laser is assumed to be malfunctioning.  The vehicle will then inform the ground station of the 

error and will ultimately refuse to land autonomously, discussed further in Section 4.10.4. 

 

4.10.3 Navigation Procedure 

 

 The navigation procedure is simply responsible for navigating the testbed to desired 

locations.  Navigation is first is accomplished by collecting GPS and IMU data from shared 

memory.  This data is then used to determine the vehicle’s offset from either a waypoint or a 

desired flight path, discussed in Section 5.2.  Next this procedure will calculate the vehicle’s 

current velocity and variant acceleration, discussed in Sections 5.4 & 5.5 respectively.  The 

calculated offsets, velocities, and variant accelerations as well as the orientation are then provided 

to the controllers.  The procedure will then collect the controller outputs and convert them to 

pulse width values, discussed in Section 5.1.  Once a desired location has been reached within a 

small threshold and maintained for a short period of time the next location is proceeded to.  Once  
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the final position has been reached the process will either initiate the landing procedure or hover 

at the last location. 

 

4.10.4 Landing Procedure 

 

The landing procedure is broken down into three phases.  These phases are responsible 

for touching down, removing lift, and powering down the vehicle.  During all phases this 

procedure will gather laser range data, GPS position, and IMU data.  Also note that during all 

phases of the landing procedure all negative, or down, collective commands output by the 

controller are divided by two.  This is done to decrease the overall downward speed of the vehicle 

from that of normal flight.  Note that landing requires that the laser be operating correctly.  If the 

laser process has reported an unrecovered failure, the vehicle will refuse to land and will hover 

indefinitely at its last waypoint. 

 The first phase of the landing procedure is responsible for lowering the vehicle until a 

touch down has been achieved.  This is done by decreasing the altitude set point in two feet 

increments.  Note that the decrement can only occur if the vehicle stays within a small latitudinal 

and longitudinal threshold of its last waypoint.  This will assist in positional stability and assure 

that the vehicle stays on target during landing.  This decrement is continued until the average 

laser range value is less than 0.175 meters and at least 90% of the readings are valid (greater than 

zero).  Checking the number of valid range readings is performed to account for erroneous data 

that is periodically experienced during the landing procedure.  Once the laser range average has 

reached 0.175 meters the skids should be within an inch or two of the ground.  At this point the 

vehicle is considered to have touch downed.  This is done so that vehicle can immediately begin 

to reduce collective, phase 2.  If this is not done the vehicle risk catching part of the skids on an 

uneven surface and tumbling onto its side.   

It is noteworthy to mention that as the helicopter enters the final few feet of landing an 

additional force, known as “ground effects”, begins to influence the helicopter.  Ground effects is 

an additional vertical force that provides the helicopter with extra lift.  This is caused by the air 

flowing through the main rotor head colliding with the ground.  This force will typically cause the 

vehicle’s descent to decrease and may ultimately prevent the vehicle from touching down.  To 

account for this effect an integrator continually reduces the collective trim of the helicopter at any 

point during landing that the velocity ceases to be downward.  This ensures that the vehicle will 

continue its decent even in the presence of ground effects. 
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The second phase of the landing procedure is responsible for removing all lift from the 

vehicle.  This is done by continually reducing the previous collective command by a value of 

0.02.  This is continued until the collective value reaches negative one.  This process will remove 

all vertical force from the vehicle in less than two seconds.  This is done to force the vehicle to 

land rather than risking the vehicle’s skids dragging the ground and tipping the vehicle over.  

Now that the collective is completely lowered the vehicle should be stably landed and phase three 

can begin. 

 The final phase of the landing procedure is to power down the motor.  The procedure first 

outputs neutral values to the roll, pitch, and yaw servos.  This should level out the swashplate and 

prevent the vehicle from commanding any movement that may damage the testbed.  The throttle 

is now decremented by values of five microseconds from its neutral value down to 1000.  Once 

the throttle has reached 1000, typically the lower limit for an ESC, the landing procedure is 

deemed complete. 

 

4.10.5 Controller 

 

Although the specifics of the controllers will be detailed in Chapter 6 it is necessary to 

mention that they are distinct from the navigation process.  The navigation process is simply 

responsible for collecting and/or calculating state data for the vehicle.  This data is then provided 

to the controllers which will in turn provide the navigation process with control commands.  

These commands range from [-1,1] and represent the possible range of control.  This is done to 

allow the software to interface with any number of controllers.  Controllers are only expected to 

conform to the expected range of control output.  This allows the testbed to easily conform to new 

controllers with minimal modification to all other software.  

 

4.11 Scripts 

 

The last folder utilized in the USL testbed’s software architecture is Scripts.  The script 

folder is designed to store any scripts that may simplify or automate OS processes.  At current 

only one script is being utilized, prep.  This script is uploaded to the testbed once it has booted.  

This script is responsible for starting all of the appropriate processes, with the exception of the 

navigate process, in their correct order.  Due to fact that many of the processes share memory  
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they must be started in an order that assures the memory is created before it is accessed.  The 

specifics contents of this script can be found in Appendix G. 
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Chapter 5 

Algorithms 

 

Although the basic steps and concepts of the software were presented in Chapter 4, the 

details of the state and PW value calculation algorithms have yet to be detailed.  This chapter is 

dedicated to detailing these algorithms.  All of the algorithms presented here reside within the 

navigation process and function as part of its execution cycle.  The detailed algorithms include 

converting controller commands to PW values, determining positional error on a flight path, 

determining heading error, calculating GPS, IMU, and fused GPS/IMU velocities, calculating 

variant accelerations, trim integrators, and GPS antenna translations. 

 

5.1 Servo Cyclic and Collective Pitch Mixing 

 

PW values calculated from roll, pitch, and collective commands are typically governed 

by the type of swashplate on the vehicle.  Most commercial RC helicopters have either a three or 

four point swashplate.  These points represent the number of servo arms that control the position 

and orientation of the swashplate, see Figure 34. 

Four points swashplates are by far the most common and are the easiest to comprehend.  

Typically, in a four point system there are dedicated servos for lateral commands (roll),  

 

 
Figure 34:  Three Point (left) and Four (right) Point Swashplates 
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longitudinal commands (pitch), and collective commands.  Thus, a lateral movement command 

from the pilot, human or computer, requires calculating a PW for a single servo.  This is also true 

for lateral and collective commands and greatly simplifies control. 

Three point swashplates, although less common, are becoming very popular.  Three point 

systems typically utilize three distinct servos placed at various angles on the swashplate.  

Typically, one servo arm is connected directly in front of swashplate.  The other two are either 

connected at 90 or 120 degrees from the front servo arm.  These systems require that a single 

command, such as a pitch command, be mixed between the three servos.  For example, a pitch 

forward command will require that the front servo lower the swashplate and the back two servos 

raise the swashplate.  This allows the vehicle to generate forward motion while retaining the 

collective of the vehicle.  The act of mixing servos is commonly referred to as Servo Cyclic and 

Collective Pitch Mixing (CCPM) but for simplicity will be referred to as servo mixing for the 

remainder of this work. 

The navigate process contains a single function, electricMixing, dedicated to mixing 

vehicle’s commands for the three point swashplate on the Joker Maxi-2.  This function mixes the 

roll, pitch, and collective commands provided by the vehicle’s controllers.  Commands are 

provided in values from negative one to one and represent positions from the minimum servo 

position to the maximum servo position as stated in Robot_defs.h.  The specific value of a 

command corresponds to a percent of distance from neutral PW to the maximum or minimum 

PW.  Equation (1) represents the calculation used to determine the PW value corresponding to a 

command.  For Equation (1), 
iPMax  is the maximum PW value for servo ‘i’, 

iPMin  is its 

minimum PW value, 
iPN  is its neutral PW value, 

iPO  is the calculated PW for servo ‘i’, and α  

is the control command with a value ranging from [-1,1]. 

( ) * 0

( ) * 0
i i

i i

P P
Pi

P P

Max N for
O

N Min for

α α

α α

− ≥⎧⎪= ⎨ − <⎪⎩
             (1) 

The mixing function first mixes the lateral, or roll, command to the vehicle.  This is done 

because roll commands do not require modification to the front servo’s position.  The function 

first determines the direction of servo movement from neutral by checking to see if the command 

is negative or positive.  Once this is determined the PW deviation is calculated using Equations 

(1) for the left servo.  This value is then added to both the right and left servo neutral values.  This 

will lower the left servo the exact same amount that it will raise the right servo hence preserving 
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the current collective value.  Note that the deviation is added to both servos because the right 

servo is mounted inversely to the left and thus an addition to both will lower one and raise the 

other. 

Next the mixing function mixes longitudinal, or pitch, commands.  This is also done 

using Equation (1) for the front servo.  Once the deviation is calculated, its value is added to the 

front servo’s neutral position.  Due to the configuration of the swashplate there is a 2:1 ratio for 

front to left and right servo commands.  This is due to an unequal ratio of distance between the 

front control arm and the two side control arms.  Thus, a single PW change in the front servo only 

corresponds to a 0.5 PW changes in the left and right servos.  Keeping this in mind, the deviation 

calculated for the front servo is then divided by two and added to the left servo and subtracted 

from the right servo.  Note that changes to both the left and right servo values are changes made 

to the values already calculated in the first part of the mixing function. 

The last command that must be mixed is the collective command.  Collective’s min, 

neutral, and max values are not directly connected to a particular servo.  These values describe 

the amount of change in the right, left, and front servos that is allowed for by the collective 

commands and for the USL testbed ranges from 0 to 160.  Mixing first calculates the PW 

deviation using Equation (1).  This value is then added to the negative of the collective’s neutral.  

This value represents the PW change for the collective input and is added to the front and right 

servo’s value and subtracted from the left servo.  It should be mentioned that the Maxi Joker-2 

has a “leading edge” rotor.  Thus, the swashplate must be lowered to increase the collective.  This 

is why the PW deviation calculated for the collective is added to the negative value of the 

collective’s neutral. 

Although PW commands for the yaw are not calculated in this function it is noteworthy 

to mention that it is also calculated using Equation (1).  As yaw commands correspond to a single 

servo the value calculated using Equation (1) can be added directly to the yaw’s neutral value to 

calculate the desired PW. 

 

5.2 Positional Error Calculations 

 

The calculations described in this section represent the algorithms used to calculate the 

positional error, or offset, of the testbed.  Specifically, position error represents the distance, in 

feet, from the current position to a desired position. 
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Positional error is typically calculated by determining the distance between the current 

GPS coordinate and a desired position on a calculated flight path.  Flight paths are represented by 

straight lines between latitude and longitude waypoints.  The desired position on the flight path is 

determined by finding intersections between a fixed circle around the vehicle and the current 

flight path.  To determine these intersections the software must first calculate the distance from 

the vehicle to both the previous and current waypoints. 

The USL testbed utilizes the Earth model for calculating distances between GPS 

coordinates, Equations (2)-(10).  It should be noted that World model equation requires that GPS 

coordinates be in decimal degree format.  To adhere to this requirement, coordinates are 

converted from decimal hour format to decimal degree using the function  

( ) [ ] ((( [ ])*100) / 60)D c c c c= + −               (2) 

where c  represents a latitude or longitude coordinate in decimal hours format and [ ]c  represents 

the greatest integer value less than c .  The first step in calculating the distance is to obtain the 

true angles, Ga1 and Ga2, using  
2

1 2 2 12(arctan( * tan( ( ( )))))a R D D RG C C D Lο
=

Ο
             (3) 

and 
2

2 2 2 22(arctan( * tan( ( ( )))))a R D D RG C C D Lο
=

Ο
             (4) 

where O and o represent the approximated major and minor axis of the earth in meters 

respectively, CD2R represents a conversion function from degrees to radians, CR2D represents a 

conversion function from radians to degrees, 1L  represents the GPS latitude for point one, and 2L  

represents GPS latitude for point two.  Using Ga1 and Ga2, the radiuses, 1R  and 2R , can 

determined using 

1 2 2
2 1 2 1
2 2

1
cos ( ( )) sin ( ( ))D R a D R a
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C G C G
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             (5) 
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Utilizing the functions  

2( , ) *cos( ( ))c D RI R G R C G=                (7) 

and 

2( , ) *sin( ( ))s D RI R G R C G=                (8) 

in Equations  

2 2
1 1 2 2 1 1 2 2 2 1

2 2
1 1 2 2 1 1 2 2 2 1
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         (9) 

and 

1 1 2 2
1 2

( ( , ) ( , ))2 * *( ( ) ( ))
2*360

c c
Y

I R G I R GE D l D lπ +
= −           (10) 

are then used to calculate the x and y distance, in meters, between the two GPS coordinates, 

where 1l  and 2l  represent the GPS longitude for points one and two respectively. 

Using Equations (2)-(10) the x and y distances from the vehicle’s position to both the 

previous and current waypoint can be calculated.  Note that the vehicle’s GPS position is used for 

variable 1L  to calculate the above mentioned distances.  For consistency both x and y distances 

are then converted from meters to feet. 

With the XE  and YE  distances calculated and converted to feet, the software can now 

determine the vehicle’s relative position to its flight path.  This can be done by determining if a 

secant or tangent line exists.  This equation is well defined in [94] and [95] and will not be 

repeated here.  If intersections exist, the testbed will then determine which intersection is closest 

to its next waypoint, using direct line distance, and then use that point as an intermediary goal.  

The x and y distances are then calculated to this intermediary goal, also defined in [94] and [95].  

If the intersection does not exist, then the vehicle is too far off course to use intermediary goals.  

In this case, positional x and y error will be calculated by determining the direct line distance 

from the testbed to the next waypoint.   

The last step in determining the positional error is to transform the x and y distances from 

the world coordinate frame to the local coordinate frame.  The local coordinate frame utilizes the 

heading of the vehicle as the Y axis.  These rotated values are provided to the controllers as error 

in the pitching direction and error in the rolling direction.  Figure 35 depicts an example of 

determining positional error. 
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Figure 35:  Demonstration of Calculating Positional Error 

 

It should be noted that altitude, or Z axis, positional error is strictly calculated by 

determining the difference, in feet, between the altitude set point and GPS supplied altitude.  This 

value is supplied to the collective controller as collective positional error. 

 

5.3 Heading Error Calculations 

 

Heading error is the deviation of the current heading from the desired heading.  

Calculating heading error is done by determining the shortest distance from the current heading to 

the desired heading.  This is typically done by subtracting the current heading from the desired 

heading.  Due to the heading’s range of -180 to 180 degrees a check must be performed to assure 

that movement in the other direction would not be optimal.  This is simply done by determining if 

the difference between the current heading and the desired heading is greater then 180 or less then 

-180.  Once the optimal error is determined it is provided to the yaw controller as heading error. 

 

5.4 Velocity Calculations 

 

Although velocity is typically one of the key elements in controlling a helicopter, it is by 

far the most difficult to accurately obtain.  On the USL testbed, velocity calculations are 

performed by integrating the accelerations provided by the IMU.  The testbed attempts to  
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compensate for drift, bias, and noise in the velocity calculations using GPS calculated velocities 

and first order Kalman filters. 

Integration of accelerations to acquire velocity first requires the removal of gravity which 

is calculated during initialization (Section 4.10.1).  Thus this procedure must first rotate the 

gravity vector to the local coordinate frame.  This is performed using 

2 2

2 2

1 0 0 0
0 cos( ( )) sin( ( )) *
0 sin( ( )) cos( ( )) 0

y

z D R D R z

x D R D R

g

g C C g
g C C
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ψ ψ

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥′ ⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦⎣ ⎦

         (11) 

to rotate the gravity vector g  about the X axis and then  
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         (12) 

to rotate vector g′ about the Y axis.  ψ  and θ  represent the Euler angles roll and pitch 

respectively.  Make note that in (11), only gravity readings on the Z axis of the gravity vector are 

rotated.  Since the vehicle is stable when the gravity vector is calculated all accelerations are 

deemed to be on the Z axis.  Gravity accelerations recorded on the X and Y axis are assumed to 

be erroneous and will be systematically filtered out in the drift calculation.  Due to this fact it is 

unnecessary to rotate the gravity vector about the Z axis. 

The rotated gravity vector, g′′ , can now be subtracted from the IMU provided 

accelerations.  The new acceleration vector, referred to as a , is then partially rotated to the world 

coordinate frame where an approximated drift, discussed later in this section, is subtracted.  For 

the purpose of this paper a partial rotation simply refers to a rotation procedure that does not 

rotate about all three axes.  The rotation procedure for a  is performed using  

2 2

2 2

cos( ( )) sin( ( )) 0
sin( ( )) cos( ( )) 0 *

0 0 1

y yD R D R

z D R D R z

x x

a aC C
a C C a
a a

θ θ
θ θ

′⎡ ⎤ ⎡ ⎤−⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥′ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥′ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

          (13) 

to rotate the vector a  about the Y axis and then  

2 2

2 2

1 0 0
0 cos( ( )) sin( ( )) *
0 sin( ( )) cos( ( ))

y y

z D R D R z

x D R D R x

a a
a C C a
a C C a

ψ ψ
ψ ψ

′′ ′⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥′′ ′= −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥′′ ′⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

          (14) 
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to rotate vector a′ about the X axis.  This partial rotation is performed as drift calculations are 

stored in this coordinate system.  Once the drift vector has been subtracted from a′′  the rotation 

to the world coordinate frame is completed using 

2 2

2 2

cos( ( )) 0 sin( ( ))
0 1 0 *

sin( ( )) 0 cos( ( ))

y yD R D R

z z

D R D Rx x

a aC C
a a

C Ca a

φ φ

φ φ

′′′ ′′⎡ ⎤ ⎡ ⎤− −⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥′′′ ′′=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥′′′ ′′⎢ ⎥− − −⎣ ⎦⎣ ⎦ ⎣ ⎦

          (15) 

where φ  is the yaw Euler angle. 

The next step performed in calculating velocity is to average a′′′ , with the 1aτ −′′′ , defined 

as the previous control loops a′′′ .  This is done to account for the loss of information due to the 

use of discrete sensor readings.  It is assumed that variations in acceleration are linear for the 

short period of time between IMU readings.  Thus an average of the prior and current 

accelerations should provide a more accurate value for integration.   

The averaged acceleration vector, a′′′ , is then integrated using the IMU process’s 

provided timestamps.  This calculated velocity vector is then added to two currently stored 

velocity vectors, IV  and FV .  The vectors IV  and FV  represent velocities calculated for the entire 

operation of the vehicle using only integrated accelerations and integrated accelerations corrected 

by GPS respectively.  These vectors will be discussed later in this section.  Note that all velocity 

readings are stored in the world coordinate frame and are only temporarily transformed to the 

local coordinate frame to supply roll, pitch, and collective velocities to the controllers. 

When new GPS positions are available, corrections to the current velocity and velocity 

calculations are performed.  This includes calculating an approximation of bias and fusing the 

GPS and IMU calculated velocities. 

Although GPS velocity can simply be calculated by determining the distance traveled 

divided by the amount of time that has passed, this method typically performs poorly.  One reason 

is that calculating velocity from discrete readings, such as GPS coordinates, introduces an error 

caused by the resolution of the readings.  The value of this error increases significantly as the 

amount time used for the calculation decreases.  This GPS velocity error will now be defined as 

( )
A

A
E

MG τ
τ

Δ =
Δ

               (16) 

where M  is the resolution of the sensor readings, in feet, on axis A  and τΔ  is the amount of 

time that has passed, in seconds, between distances readings.  This is significant when 
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considering calculating GPS velocity from two consecutive readings.  At its lowest resolution the 

NMEA GPGGA message can only provide position at approximately a six inch resolution.  If the 

GPS is operating at 5 Hz and velocity is calculated using consecutive readings the GPS velocity 

error could be as large as 2.5 ft/sec.  Note that to reduce this error, τΔ  must be increased.  

Simply increasing τΔ  assumes that the system is stagnate during that particular time interval.  

Although this assumption may be valid periodically, it is not valid for every possible time 

interval.  A more optimal algorithm should dynamically increase τΔ , as appropriate. 

To assure that the USL testbed utilizes a more accurate GPS velocity a new method 

which dynamically updates τΔ  was developed.  This method attempts to approximate the current 

GPS velocity by utilizing past GPS velocities that are deemed plausible.  The algorithm first 

calculates multiple velocity vectors from GPS movements that occurred over the last one second.  

These vectors are calculated using  

( )

( )

( )

( ( , )) *

( ( , )) *

( ( , )) *

Y
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i

G
i z

i
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x

HzF E i
iT

HzT F E i
i

T HzF E i
i

τ τ

τ τ

τ τ

⎡ ⎤−⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥−
⎣ ⎦

,            (17) 

where iT  represents the temporary GPS velocity vector calculated using ‘i+1’ GPS readings, F  

is a function for converting from meters to feet, E  is a function for calculating the distance 

vector between the current GPS position, τ , and the iτ −  GPS position using the World Model 

equation, and GHz  is the operating frequency of the GPS.  As these calculations are only 

performed for the past one second’s worth of data, ‘i’ will range from [1, GHz ] and GHz  vectors 

will be calculated. 

Initializing the GPS velocity vector GV  to 1T  and beginning with 2i = , the elements of 

vector iT  are compared to calculated error thresholds.  This is done using  
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if 
Ai

T  is positive or  
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⎪ ⎛ ⎞ ⎛ ⎞− −⎪ − ≥ −⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

    (19) 

if 
Ai

T  is negative.  Note that subscript A represent a particular axis (i.e. lateral, longitudinal, or 

vertical).  Updates to GV  continue until either all iT  vectors have been exhausted or until iT  fails 

to adhere to the boundaries set by 
AGV  and EG .  Boundary failures are determined by the 

inequality  

1 1
A A A A AG E i G E

G G

i iV G T V G
Hz Hz

⎛ ⎞ ⎛ ⎞− −
− ≤ ≤ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
           (20) 

in Equation (18) and  

1 1
A A A A AG E i G E

G G

i iV G T V G
Hz Hz

⎛ ⎞ ⎛ ⎞− −
+ ≤ ≤ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
           (21) 

in Equation (19).  If the threshold is broken for a particular element in vector iT  then that axis has 

used all the data deemed valid for its computation.  The failed axis is then finalized by setting the 

corresponding axis in GV  with the closest valid value in inequality (20) or (21) to the failed iT  

element.  Although other elements in vector GV  may continue to be updated, axes whose 

thresholds have been broken cease to be updated.  Note that iT  vectors can be individually 

calculated and compared rather than calculating all possible vectors as described in (17).   
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Figure 36:  Example of Six GPS Readings Along a Single Axis 

 

Calculating vectors as needed will decrease the computational complexity of the algorithm.  The 

algorithm was described as it is for clarity and ease of understanding. 

For clarity, Figure 36 details an example of GPS data from a 5 Hz receiver along a single 

axis.  Note that the position data is labeled 1-6 where 1 is the most current data and 6 is the oldest 

and the grid represents the lowest resolution of the GPS on that particular axis.  Using the above 

method to calculate the current velocity the algorithm would first calculate the base velocity 1T  

using positions 1 and 2.  This would provide a velocity of zero ft/sec.  Next the algorithm would 

calculate the velocity using positions 1, 2, and 3.  This would also provide a velocity of zero 

ft/sec which does not violate the inequality (20), i.e. the range (-1.7,1.7).  Using positions 1, 2, 3, 

and 4 again provides a velocity of zero which also does not violate (20), i.e. the range (-0.8,0.8).  

Using positions 1, 2, 3, 4, and 5 provides a velocity of 0.8 ft/sec.  This velocity violates (20), i.e. 

the range (-0.6,0.6), and thus stops further integration of GPS data on that particular axis.  Since 

the temporary velocity is violated on the positive side of the threshold the final velocity along that 

axis is set to zero, the last valid velocity, plus the threshold, 0.6 ft/sec. 

The method described above allows τΔ  in (16) to be dynamically increased by utilizing 

past data that appears to be valid and thus decreasing the velocity error due to resolution.  Figure 

37 depicts velocity calculations for a single run of the USL testbed using the standard velocity 

calculation algorithm and the one used by the USL testbed. 
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Figure 37:  Flight Velocities Calculated Using the Standard Method (left) and USL Method 

(right) 

 

Velocities calculated from IMU integrated accelerations are typically subject to some 

level of drift.  This drift is typically constant for very short periods of time.  Drift can heavily 

influence velocity calculations and will typically render the velocities useless within a matter of 

seconds.  Figure 38 depicts velocities calculated using IMU supplied accelerations with only the 

gravity vector removed. 

During operation the navigation process continually attempts to calculate drift and 

remove it from the accelerations readings.  This is first done by calculating the difference 

between a strictly IMU calculated velocity, IV , and the velocity calculated by GPS, GV .  This is 

performed using  

( ) ( )
H HI G I GS V V V V

τ τ τ τ− −
= − − −             (22) 

where S  is the slope vector of the offset, τ  is the current time step, and H  is the number of 

time steps in one second.  This vector is then rotated about the Z axis using  

2 2

2 2
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sin( ( )) 0 cos( ( ))
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φ φ
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′⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥′ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥′ ⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

.          (23) 

S′ is the added to any previously stored bias represented by vector B .  Bias, B , is stored in this  
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Figure 38:  Flight Velocities Calculated Using Integrated Accelerations without Drift Corrections 
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Figure 39:  Flight Velocities Calculated with (right) and without (left) Drift Corrections 

 

coordinate frame for two reasons.  First, bias is being calculated for specific axis of sensors 

within the IMU.  Thus the bias should be stored utilizing the orientation of the IMU.  Second, 

complete rotation to the local coordinate frame would be redundant.  B  is only used to subtract 

bias from the acceleration vector, a′′ .  As this vector is already in the correct coordinated system 

it is unnecessary to fully rotate B .  Figure 39 depicts flight velocities calculated by integrating 

the accelerations with and without bias removal. 

It should be noted that during testing it was determined that an offset between the GPS 

calculated velocities and the IMU calculated velocities existed.  The IMU velocities where 

preceding the GPS velocities by approximately one second.  To account for this the slope 

calculation described in (22) is offset by one second.  Instead of calculating the difference 

between the current GPS velocities and the current IMU velocity, the slope is calculated by 

comparing the current GPS velocity with the IMU velocity from one second prior, i.e. 

2
( ) ( )

H H HI G I GS V V V V
τ τ τ τ− − −

= − − − .            (24) 

Once drift has been approximated the GPS velocity vector GV  is fused with 
HFV

τ −
 using  
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⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

,           (25) 

where the vector K represents the standard first order Kalman gain.  Equation (25) is performed 

to remove offset from the velocity calculation that was not previously accounted for by drift.  

Figure 40 details velocities calculated using only GPS, only bias corrected IMU, and fused IMU 

and GPS. 
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Figure 40:  Flight Velocities Calculated Using GPS (top), Bias Corrected IMU (middle), and 

Fused GPS/IMU (bottom) 

 

5.5 Acceleration Variant Calculation 

 

Controllers for the USL testbed, described in Chapter 6, utilize accelerations to help 

determine the correct control response.  Although accelerations are provided directly by the IMU 

they are unfiltered and typically do not correspond well with the velocity calculations above.  To 

account for this the accelerations are recalculated, now referred to as the acceleration variant, 

using the filtered and fused velocity vectors. 

First, the difference between the current velocity, FV
Ω

, and the last seven velocities, 

1 2 7
, , ,F F FV V V

Ω− Ω− Ω−
… , is calculated.  The use of seven velocities provides adequate smoothing 

without a large delay in acceleration calculation.  This was determined through experimentation 

with various size sets of velocities.  These seven values are then averaged to produce the change 
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Figure 41:  Flight Accelerations from IMU (top) and Variant Calculated (bottom) 

 

in velocity, FVΔ .  The acceleration variant, VA , is then calculated using 

( 7)
F

V
VA Δ

=
Ω − Ω−

,              (26) 

where Ω  represents the timestamp for FV
Ω

 and ( 7)Ω−  represents the timestamp for 
7FV

Ω−
.  The 

acceleration variant is then passed through a first order Kalman filter and provided to the pitch 

and roll controllers as accelerations.  Figure 41 depicts a comparison of the acceleration variant 

and raw accelerations provided by the IMU. 

 

5.6 Trim Integrators 

 

On top of its many duties, the navigate function is responsible for determining when 

progress is not being made by the helicopter.  This is done be evaluating the positional error, 

velocity, and acceleration of the vehicle. 

During operation, the navigation function continuously calculates three integrators.  

These integrators are used as trim values for the roll, pitch and collective and are added to the PW 

outputs of these axes.  Calculations are performed by incrementing or decrementing the integrator 

by a small constant amount.  These calculations are only performed when the vehicle is outside of  
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a positional threshold of its goal and no progress, be it though acceleration or velocity, is being 

made.  Direction of the integration is based on the direction of progress that needs to be made. 

The roll and pitch integrators are also used to alter the neutral orientation of the 

helicopter.  The neutral orientation is considered to be the orientation at which the vehicle will 

hover.  Further discussion of this aspect is held until Chapter 6. 

 

5.7 Antenna Translations 

 

As mentioned in Section 3.3.4 the GPS antenna is mounted towards the end of the tail 

boom on top of the horizontal fin.  This location is utilized to assure that the GPS antenna is not 

located near any of the vehicle’s structures or components that might interfere with its satellite 

reception.  This method of installation induces a constant error into the positional data of the 

vehicle.  Due to the size of the vehicle the offset is fairly small (< 2.5 feet).  Although the error is 

small, it does create issues during heading rotations of the vehicle.   

Heading rotations cause the vehicle to rotate about the main shaft of the vehicle.  As the 

GPS antenna is mounted on the tail of the vehicle, a rotation about the main shaft appears as a 

positional movement around a circle.  This positional movement is also calculated as a GPS 

velocity in Section 5.4.  To insure that the USL testbed can safely and efficiently change headings 

during flight two translations are performed to remove both the positional error and velocities 

caused by the mounting location of the GPS antenna. 

 

5.7.1 Positional Translation 

 

Positional translations are performed to remove the offset between the GPS antenna and 

the rotational axis of the helicopter.  This translation is only performed in the gpsRollPitchError 

function, described in Appendix G, and does not modify the lateral or longitudinal positions 

outside of that function. 

The positional translation algorithm first determines the antenna’s positional error by 

rotating its constant offset in the local coordinate frame to the world coordinate frame.  This is 

done using 



www.manaraa.com

 

 

91

2 2

2 2

cos( ( )) 0 sin( ( ))
0 1 0 *

sin( ( )) 0 cos( ( ))

y yD R D R

z z

D R D Rx x

P PC C
P P

C CP P

φ φ

φ φ

′⎡ ⎤ ⎡ ⎤− −⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥′ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥′ ⎢ ⎥− − −⎣ ⎦⎣ ⎦ ⎣ ⎦

          (27) 

where P  is the positional offset of the GPS antenna in the world coordinate frame.  Note that the 

x component of the positional offset should always be zero in the local coordinate frame.  This is 

because the antenna is located on the boom of the helicopter and thus located on the y axis of the 

local coordinate frame. 

P′  is then converted to offsets in decimal hours format using 

( )* /1000000X X XL P M′=              (28) 

to calculate the longitudinal offset and  

( )* /1000000Y Y YL P M′= −              (29) 

to calculate the lateral offset.  Note that the product of the offset, P′ , and the GPS resolution, 

M , is divided by one million to adhere to NMEA positional units. 

Although the offsets are now in a form that can be directly removed from the GPS 

provided positions, to do so may cause unexpected results.  As mention in Section 5.4 there is a 

noticeable time offset between IMU data and GPS data.  This offset was approximated to be a one 

second delay.  To account for this, changes to the positional translation, Tp , are delayed for up to 

one second.  This is done by calculating and storing the difference between the corrections 

calculated in (28) and (29) for the current GPS time step and the previous GPS time step using 

  1

1

X X X

Y Y Y

Ts L L

Ts L L
τ τ τ

τ τ τ

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
.             (30) 

Note that Ts  only stores data for the last one second’s worth of GPS data and its size is equal to 

the frequency of the GPS data.  As such, when a new set of data is added to Ts  the oldest set of 

data must be removed.  Any non-zero value removed for Ts  is added to Tp .  This ensures that 

all translations will be incorporated into the position calculation within one second. 

It should be noted that GPS positional data may not be delayed for a full second.  Thus 

this algorithm monitors changes in the positional data and determines if these changes correspond 

with changes caused by a rotation.  This is done by comparing the difference between the current 

GPS position and the previous GPS position, Ld .  If a difference exists on the lateral, YLd , or 

longitudinal, XLd , axis it is compared with that axes corresponding values stored in Ts .  These 
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comparisons are used to make corrections to the position translation and are calculated using 

0 0

0 0

i i

i i i

i i

A A A A

A A A A A A
A

A A A A A A

A

Tp Ts for Ld Ts

Tp Ts for Ld Ts or Ld Ts
Tp

Tp Ld for Ts Ld or Ts Ld

Tp otherwise

τ τ

τ τ τ

τ τ

− −

− − −

− −

+ =⎧
⎪

+ > > < <⎪= ⎨
+ > > < <⎪

⎪
⎩

,        (31) 

 

0 0 0

0 0
i i

i i i i i

i

A A A A

A A A A A A A A

A

for Ld Ts or Ld Ts

Ts Ts Ts Ld for Ts Ld or Ts Ld

Ts otherwise

τ τ

τ τ τ τ τ

τ

− −

− − − − −

−

⎧ ≥ > ≤ <
⎪

= = − > > < <⎨
⎪
⎩

,       (32) 

and 
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       (33) 

where A  represents the axis, either longitudinal or lateral, and i  represents a variable used to 

traverse the data stored in Ts .  Note that i  is initialized to be equal to the frequency of the GPS 

and is reduced by one after (31), (32), and (33) have been performed on both the lateral and 

longitudinal axis.  The comparison calculations are concluded after the 0i =  calculations are 

performed.  It should be mentioned that values stored in Ts  are modified in (32).  This done to 

ensure that corrections made during these calculations are not reused in later calculations. 

 Values YTp , the latitude offset, and XTp , the longitude offset, are always removed from 

the GPS supplied latitude and longitude before positional error calculations are performed.  This 

assures that the positional error calculated in Section 5.2 represents the error from the rotational 

axis, or main shaft, of the helicopter and not the location of the GPS antenna.   

 

5.7.2 Velocity Translation 

 

Although the positional translation algorithm can effectively translate the GPS location, 

its translations can not be directly used by the velocity calculation.  The positional translation 

algorithm will only delay a known offset for up to one second.  It is feasible that the GPS position 

take longer than one second to recognize the movement.  Thus, velocities calculated using the  
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translated positions would calculate a velocity from the offset induced by the position translation 

algorithm and an equal but opposite velocity from the delayed GPS position. 

To account for these issues the velocity translation algorithm was developed.  This 

algorithm is designed to remove velocities that would be calculated due to rotations but will never 

increase or create a velocity.  Unlike the positional translation algorithm which attempts to match 

the GPS antenna’s position with the vehicles position, this algorithm only attempts to remove 

differences between consecutive GPS positions that may have been caused by heading rotations.  

The velocity translation algorithm is only performed in the calcVelocity function, described in 

Appendix G, and is almost an exact replica of the position translation algorithm.   

The velocity translation algorithm, like the positional translation algorithm, first 

determines the antenna’s positional error using (27) and then calculates the lateral and 

longitudinal offsets using (28) and (29).  Ts  is then calculated using (30) as described in Section 

5.7.1.  Note that any unused data that is removed from Ts  due to time is simply discarded and is 

in no way utilized in this algorithm.  This method prevents the algorithm from ever creating or 

increasing a velocity.  Unlike the position translation algorithm, the velocity translation algorithm 

does not use (31), (32), and (33) to calculate modifications to the translation.  Instead this 

algorithm uses 
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,        (34) 

(32), and (33) to directly calculate the velocity translation, Tv , which is always initialized to 

zeros.  As described in Section 5.7.1, i  represents a variable used to traverse the data stored in 

Ts  and is initialed to equal to the frequency of the GPS.  The variable is reduced by one after 

(34), (32), and (33) have been performed on both the lateral and longitudinal axis.  The 

comparison calculations are concluded after the 0i =  calculations are performed. 

 Values YTv , the latitude offset, and XTv , the longitude offset, are always removed from 

the GPS supplied latitude and longitude before the GPS velocity calculations are performed.  

Note that modifications to the GPS position data are not carried outside of the velocity calculation 

and do not affect any other algorithm or calculation. 
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Chapter 6 

Controller 

 

In autonomous vehicles, the controller is the heart of system.  First, a controller must 

assure that it can efficiently and effectively perform its assigned tasks.  This is especially difficult 

in UAV vehicles which require constant control inputs.  Unlike Unmanned Ground Vehicles 

(UGVs) which can sit ideal for large periods of time while calculations are being performed, a 

UAV must receive control signals at a reasonably high rate to remain stable.  Second, UAVs are 

typically highly nonlinear.  A controller must be able to adhere to the dynamics of the vehicle for 

which it is designed.  Last, a controller must safeguard its vehicle and the surrounding 

environment from harm.  This is especially true for UAV vehicles as they present an enormous 

risk to onlookers and surrounding property. 

 

6.1 Fuzzy Logic 

 

Fuzzy Logic was chosen as the methodology for developing the controllers for the USL 

helicopter testbed.  Fuzzy logic provides multiple advantages to control development including 

the use of linguistic variables, functionality using imprecise or contradictory input, ease of 

modification, and the ability to directly implement knowledge from multiple experts. 

 

6.1.1 Overview 

 

Fuzzy logic is a methodology based on assigning degrees of membership to linguistic 

terms known as membership functions.  As typical linguistic descriptions are loosely defined so 

are fuzzy sets.  For example, an individual that can run two meters per second might be defined 

by some as being fast while others may define the individual as average.  Thus, the man has some 

degree of membership to both the linguistic terms fast and average.  The specifics values of the 

individual’s membership to these terms are defined by the membership functions.  Figure 42 

details three possible membership functions for the runner. 
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Figure 42: Example of Three Fuzzy Sets for the Speed of a Runner 

 

Note that in Figure 42 each membership function is triangular.  Membership functions 

can take on any shape that accurately depicts the linguistic variable.  Although fuzzy sets 

typically take on values from [0,1], they can take on any range of values. 

The act of converting crisp inputs, such as the speed of the runner mentioned above, into 

memberships of linguistic terms is known as fuzzification.  Fuzzification is the first step in using 

fuzzy logic as a controller.   

The second step in fuzzy control is the inference engine.  This is the decision making 

section of fuzzy logic and functions based on linguistic rules.  These rules are typically in the 

form of if-else statements and are developed from information gained from experts.  Experts, for 

the purpose of this research, are individuals who may have no expertise in fuzzy control but are 

experts in the system being controlled.  These experts create rules based on the linguistic sets.  An 

example of a fuzzy rule for controlling the speed of treadmill could be “If a runner is fast and the 

speed is slow then increase the speed”.  The crisp inputs would be the numerical speed of both 

the runner and the treadmill.   

The strength of an output from a rule is directly affected by each input’s degree of 

membership to that set.  Although multiple methods exist for determining the strength of the 

output, one classical method is the max method.  In this method the strength of the output is 

directly proportional to the degree of membership of the input with the highest degree of 

membership to its set.  Note that if the inputs into the fuzzy controller fell into more than one 

fuzzy set there would be multiple rules activated.  This procedure will most likely produce 

multiple fuzzy outputs. 

The last step in fuzzy control is to convert the fuzzy outputs to crisp outputs.  This step is 

known as defuzzification for which multiple methods exist.  One of the more common methods  
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for defuzzification will assign crisp values to each of the linguistic outputs.  This method then 

multiplies the strength of each fuzzy rule by the value of its linguistic output.  These values are 

then averaged and used as the crisp output.  

 

6.2 Controller Methodology 

 

The USL helicopter controllers were developed with several key aspects in mind.  First, 

the controllers needed to be as robust as physically possible.  This was required as the project was 

originated with the desire to operate a small fleet of autonomous helicopters.  Since the dynamics 

of small RC based UAVs varies greatly even between replicas, any controllers developed for use 

on multiple UAV’s had to be robust.  The design of robust controllers coupled with modular 

software, see Chapter 4, and modular hardware, see Chapter 3, would allow for the fastest 

implementation of an autonomous UAV fleet. 

One important aspect in the design of the controllers is the creation of fuzzy rules based 

on general RC helicopter flight and not on the Joker Maxi 2 helicopter flight.  This allowed focus 

to be placed on providing control based on the concepts of flight rather than the specifics of one 

particular helicopter.  This is done by utilizing an expert in RC helicopter flight that had little 

experience with the Joker Maxi 2.  This assured that decisions were not based on a single 

platform. 

The second aspect by which the USL helicopter’s controllers were designed is the desire 

to keep the rule base manageable.  More precisely, it is desired that modifications to the rule base 

be quick, simple, and straight forward.  This development aspect is introduced as the vehicle is 

designed to be a testbed.  Once developed the testbed could be utilized to create nonlinear 

coupled controllers but is deemed “overkill” for the original testbed design.   

Although helicopter dynamics are heavily coupled, the degree to which they are coupled 

is heavily influenced by the types of flight being performed.  Aggressive maneuvers such as stall 

and knife edge turns require heavy compensation from all aspects of control.  Non-aggressive 

maneuvers such as hovering and simple waypoint flight can be virtually decoupled.  Decoupling 

of the control is further assisted by the rate and resolution at which newer technology sensors 

operate.  Although the controllers may not immediately compensate for coupling the input from 

sensors allows compensation to be performed before a noticeable degradation occurs.  The work 

presented here decouples control into four categories: collective control, yawing control, roll 

control, and pitch control.  Note that throttle control is simply held constant during flight. 
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6.2.1 Generic Vehicle Model 

 

Although the controllers described by this work were designed without a highly 

developed model they were designed for controlling a specific class of vehicles, i.e. helicopters.  

This class of vehicle has several fundamental properties that classifies it as a helicopter.  Thus, 

these fundamental properties correspond to a generic model for this class of vehicle. 

First, only two controllable surfaces exist on a helicopter: the main rotor and the tail 

rotor.  In the local coordinate frame, the main rotor can directly control a vertical force and two 

angular forces (latitudinal and longitudinal).  The tail rotor can directly control an angular force 

about the local vertical axis.  Thus, there is only a single controllable aspect of the vehicle that 

causes a non-angular velocity.  This non-angular velocity, now referred to as lift, can only create 

a vertical force in the local coordinate frame.  Thus, velocities within the world frame are directly 

connected to the orientation of the vehicle and can be calculated using 

` ` `TOT MR G D EV F F F F= + + +∫ ,             (35) 

where ` GF  is the force vector produced by gravity in the local frame, MRF  is the force vector 

produced by the main rotor in the local frame, ` DF  is force vector produced by drag in the local 

frame, and ` EF  is the force vector produced by all other miscellaneous forces in the local frame.  

Miscellaneous forces encompasses all other forces acting on the helicopter including wind, 

temperature, weight distribution, etc.  Note that ` EF  is assumed to be far smaller than ` GF  or MRF .  

As ` EF  begins to approach either of these forces the vehicle will most likely become 

uncontrollable. 

It should now be mentioned that TOTV  has a natural threshold which prevents the velocity 

vector from growing without bound.  As TOTV  increases the drag, ` DF , will increase as an 

opposing force.  Since, ` GF  has a constant strength,  MRF  is bound by the mechanics of the 

vehicle, and ` EF  is considered to be small, TOTV  will ultimately be constrained by ` DF . 

Second, the bulk weight for helicopters is, and should be, centrally located under the 

main rotor.  Thus the center of gravity falls below the vehicle’s natural rotational axis located at 

the center of the main rotor.  This design causes a simulated pendulum effect where the bulk 

weight of the vehicle will naturally swing below the main rotor.  This pendulum effect is then 
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dampened by external forces such as drag.  Thus, in the absence of a large angular force the 

vehicle will naturally stabilize in a near horizontal fashion.  This fact allows the controllers to 

prevent excessive angles with very little control effort. 

 Using this generic and heavily generalized information a controller was developed to 

calculate a desired velocity and then achieve that velocity.  The controller attempts to maneuver 

and stabilize the vehicle simply by controlling the velocities of the vehicle. 

 

6.2.2 Control Through Position Error 

 

Position error is the driving force behind maneuvering the vehicle.  The controllers 

described in this work are designed to utilize the position error to determine a desired velocity.  

Note that desired velocity is strictly a fuzzy variable which describes the desired direction and 

strength for velocity.  This desired velocity is then used by the controllers, along with the state of 

the vehicle, to determine control output.  Desired velocity is calculated for the lateral, 

longitudinal, and vertical axes as well as the heading orientation. 

The heading velocity for the USL testbed is controlled strictly by the heading hold gyro, 

discussed further in Section 6.3.4.  Thus, the desired velocity calculated for the heading is 

sufficient for controlling the tail rotor. 

It should be noted that the desired velocity is never actually calculated.  It is described 

here to show the decision processes that the fuzzy controllers attempt to mimic.  This type of 

description is used for the remainder of this chapter. 

 

6.2.3 Control Through Velocity 

 

As control is based on the desired velocity the first input evaluated by the fuzzy 

controllers is the velocity of the vehicle.  From (35), velocities are directly proportional to the lift 

and orientation of the helicopter.  Assuming that the lift is essentially stagnant, the lateral and 

longitudinal velocities can be controlled by the orientation of the vehicle.  Thus the lateral and 

longitudinal controllers calculate a desired orientation.  This fuzzy variable is calculated by 

comparing the desired velocity to the actual velocity.  If the vehicle’s velocity is greater than the 

desired velocity an angle is selected that should reduce the speed of the vehicle.  If the vehicle’s 

velocity is less than the desired velocity an angle is selected that should increase the speed of the 

vehicle. 
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Vertical velocities are controlled by calculating a desired change in lift, or collective.  

This desired change is based on the difference between the current velocity and the desired 

velocity.  Note that during flight the natural lift is assumed to be enough lift to counteract gravity 

and thus create vertical stability.  Desired velocities create the need to reduce or increase the 

natural lift.  If the desired velocity is up the lift is increased.  If the desired velocity is down the 

lift is decreased. 

 

6.2.4 Control Through Acceleration Variant 

 

Section 6.2.3 detailed how the velocity input is used to determine a desired lateral and 

longitudinal orientation as well as the desired change in lift.  Although the controller does its best 

to determine values that will provide the desired velocities, the specific velocity obtained given 

an orientation is heavily dependent on the type and configuration of the vehicle.  In an attempt to 

compensate for this type of variation, the desired orientations, calculated in Section 6.2.3, are 

modified according to the acceleration variant input. 

The acceleration variant input determines if the rate at which the velocity is changing is 

appropriate.  For the lateral and longitudinal axes this input attempts to modify the desired 

orientation to fit the vehicle being used.  If the desired angles calculated in 5.2.3 are producing a 

velocity at too great a rate the desired angles are reduced.  If the desired angles are producing a 

velocity at too slow a rate the desired angles are increased.  This concept is also used to modify 

the change in lift.  Once the change in lift has been corrected by the acceleration variant the 

desired collective is output from the controller.  Note that these modifications do not carry from 

operation to operation and are only calculated using the most current state data. 

 

6.2.5 Control Through Orientation 

 

Now that the desired angles have been calculated the controller must determine an output 

capable of achieving these angles.  This is performed by calculating a desired angular rate which 

identifies the direction and speed at which the vehicle will rotate.  This value is based on the 

difference between the current and desired angles.  If the current angle is too small the controller 

attempts to create an angular rate that will increase the vehicle’s angle.  If the current angle is too 

large the controller attempts to create an angular rate that will decrease the vehicle’s angle. 
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To assure that the vehicle does not obtain an orientation that is difficult to control 

limitations were designed into the fuzzy rules.  These rules allow angles to be achieved within a 

constrained threshold.  The values of these constraints are designed directly into the fuzzy 

controllers via the two extreme Membership Functions (MFs) of the orientation inputs.  As the 

vehicle begins to approach the assigned thresholds for orientation the desired angular rates 

become skewed.  This skew reduces any desired angular rate that would increase the orientation 

of the vehicle.  Once the vehicle has surpassed the threshold for orientation the controller will 

only calculate desired angular rates that decrease the angle of the vehicle.  

 

6.3 Implementation 

 

The four fuzzy controllers for the USL testbed were developed in Matlab utilizing 

Sugeno constant fuzzy logic and a weighted average defuzzification method.  All rules for the 

controllers are based on the ‘and’ method and use membership products to determine the strength 

of each rule.  Each controller has a single output which ranges from [-1,1] corresponding to the 

minimum and maximum PW for that particular control respectively.  It should be noted that all of 

the inputs, with the exception of orientation (angle), for the controllers are in various units of feet 

(i.e. feet, feet/second, feet/second2).  Orientation inputs are based on Euler angles and are in units 

of degrees. 

 

6.3.1 Assumptions 

 

Several assumptions were made during the design of the USL controllers.  First, control 

for both the roll and pitch is based on the assumption that a level vehicle will create minimal 

velocity and accelerations.  Although this statement is not typically valid, there is an orientation 

that is optimal for creating minimal velocities.  This optimal orientation may or may not be 

perfectly level and is periodically dynamic.  The optimal orientation is based on multiple 

variables including weight distribution, mechanical setup, and wind to name only a few.  To 

compensate for this the navigation function implements three integrators, discussed in Chapter 5.  

These integrators are not only used to adjust the vehicles trims but also to modify its internal 

definition of level.  If the vehicle drifts off course or cannot reach a desired position the integrator 

slowly increases the vehicles trim in that direction.  In parallel the vehicles definition of level is 

rotated in the direction of the integrator.  This allows the vehicle to continuously attempt to find 
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the optimal definition of level which will ultimately increase the accuracy of the controller and 

validate the afore mentioned assumption. 

Second, the collective controller assumes that a neutral, or zero, command will hover the 

vehicle.  This statement is also typically untrue.  The hovering collective varies greatly based on 

the wind, throttle, and battery charge, to name only a few.  Thus the collective integrator, 

discussed in Chapter 5, continuously updates the trim value of the collective.  This dynamically 

increases or decreases the neutral value of the controller to its optimal location thus validating the 

assumption. 

 

6.3.2 Roll Controller 

 

The roll controller is responsible for all longitudinal movement of the helicopter.  

Decisions for control are based on four inputs: longitudinal position error, longitudinal velocity, 

roll angle, and longitudinal acceleration variant (discussed in Chapter 5).  Note that all inputs are 

in the local coordinate frame of the helicopter. 

The first three inputs, position error, velocity, and angle, are broken into five fuzzy sets: 

“bigL” (big left), “left”, “small”, “right”, and “bigR” (big right), see Figure 43.  Make note that 

the “left”, “right”, and “small” sets for each input are triangular in shape and sets “bigL” and 

“bigR” are trapezoidal.  The “bigL” and “bigR” trapezoidal membership functions extend to -∞ 

and  ∞ respectively.  This is to assure that any possible value for these inputs can be appropriately 

handled by the controller. 

The fourth input, acceleration variant, is broken into three fuzzy sets: “left”, “small”, and 

“right”, see Figure 43.  Make note that only the “small” fuzzy set is triangular in shape and sets 

“left” and “right” are trapezoidal.  The “left” and “right” trapezoidal membership functions 

extend to -∞ and  ∞ respectively. 

To assure that every possible combination of inputs is accounted for a rule is developed 

for each.  This is foremost done to assure that the fuzzy rule set is complete.  This method also 

assures that every combination of inputs is distinctly evaluated by the expert.  This assures that 

input combinations would not be incorrectly grouped together and assigned a single rule.  This 

method creates 375 distinct rules for the roll controller.  Although the specific rules are not 

presented here, they are provided in Appendix H to assure completeness.   



www.manaraa.com

 

 

102

 

 

 

 
Figure 43:  Membership Functions for Positional Error (top), Velocity (second), Angle (third), 

and Acceleration Variant (bottom) for the Roll Controller 

 

The roll controller has seven possible outputs: “bigL” (big left), “medL” (medium left), 

“left”, “zero”, “right”, “medR” (medium right), and “bigR” (big right).  Each of these outputs is 

assigned a constant value ranging from [-1,1] and distributed equally around “zero”.  The crisp 

output is determined by averaging the strengths of the fuzzy outputs with their respective 

constants.  Table 7 details the exact values used for outputs for all controllers.  Note that all 

output values were determined by both the expert’s opinion and information gathered during 

manual flights.  The output values were also tuned for performance during testing. 
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6.3.3 Pitch Controller 

 

The pitch controller is responsible for all lateral movement of the helicopter.  Decisions 

for control are based on four inputs: lateral position error, lateral velocity, pitch angle, and lateral 

acceleration variant (discussed in Chapter 5).  Note that all inputs are in the local coordinate 

frame of the helicopter. 

The first three inputs, position error, velocity, and angle, are broken into five fuzzy sets: 

“bigF” (big forward), “forward”, “small”, “backward”, and “bigB” (big backward), see Figure 44.  

Make note that the “forward”, “backward”, and “small” sets for each input are triangular in shape 

and sets “bigF” and “bigB” are trapezoidal.  The “bigF” and “bigB” trapezoidal membership 

functions extend to -∞ and ∞.  This is to assure that any possible value for these inputs can be 

appropriately handled by the controller. 

The fourth input, acceleration variant, is broken into three fuzzy sets: “forward”, 

“backward”, and “small”, see Figure 44.  Make note that only the “small” fuzzy set is triangular 

in shape and sets “forward” and “backward” are trapezoidal.  The “forward” and “backward” 

trapezoidal membership functions extend to ∞ and -∞ respectively. 

To assure that every possible combination of inputs is accounted for a rule is developed 

for each.  This is foremost done to assure that the fuzzy rule set is complete.  This method also 

assures that every combination of inputs is distinctly evaluated by the expert.  This assures that 

input combinations would not be incorrectly grouped together and assigned a single rule.  This 

method created 375 distinct rules the pitch controller.  Although the specific rules are not 

presented here, they are provided in Appendix H to assure completeness.   

It should be noted that rules for both the roll and pitch controllers are identical.  This is 

deemed valid as the tail of an RC helicopter has minimal effect on these two axes.  The effect of 

the tail is further minimized by the heading hold gyro which is responsible for keeping the 

heading stable. 

The pitch controller has seven possible outputs: “bigF” (big forward), “medF” (medium 

forward), “forward”, “zero”, “backward”, “medB” (medium backward), and “bigB” (big 

backward).  Each of these outputs is assigned a constant value ranging from [-1,1].  The crisp 

output is determined by averaging the strengths of the fuzzy outputs with their respective 

constants.   
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Figure 44:  Membership Functions for Positional Error (top), Velocity (second), Angle (third), 

and Acceleration Variant (bottom) for the Pitch Controller 

 

6.3.4 Collective Controller 

 

The collective controller is responsible for all vertical movement of the helicopter.  

Decisions for control are based on three inputs: vertical position error, vertical velocity, and 

vertical acceleration variant.  Note that all inputs are in the local coordinate frame of the 

helicopter. 

The first two inputs of the collective controller are broken into five fuzzy sets: “bigD” 

(big down), “down”, “small”, “up”, and “bigU” (big up), see Figure 45.  Make note that the 

“down”, “up”, and “small” sets for each these inputs are triangular in shape and sets “bigD” and 

“bigU” are trapezoidal.  The “bigD” and “bigU” trapezoidal membership functions extend to -∞  
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and ∞ respectively.  This is to assure that any possible value for these inputs can be appropriately 

handled by the controller. 

The third input, acceleration variant, is broken into three fuzzy sets: “forward”, 

“backward”, and “small”, see Figure 45.  Make note that only the “small” fuzzy set is triangular 

in shape and sets “forward” and “backward” are trapezoidal.  The “forward” and “backward” 

trapezoidal membership functions extend to ∞ and -∞ respectively. 

To assure that every possible combination of inputs is accounted for a rule is developed 

for each.  This is foremost done to assure that the fuzzy rule set is complete.  This method also 

assures that every combination of inputs is distinctly evaluated by the expert.  This assures that 

input combinations would not be incorrectly grouped together and assigned a single rule.  This 

method created 75 distinct rules the collective controller.  Although the specific rules are not 

presented here, they are provided in Appendix H to assure completeness. 

The collective controller has seven possible outputs: “bigU” (big up), “medU” (medium 

up), “up”, “zero”, “down”, “medD” (medium down), and “bigD” (big down).  Each of these 

outputs is assigned a constant value ranging from [-1,1].  The crisp output is determined by 

averaging the strengths of the fuzzy outputs with their respective constants. 

 

 

 

 
Figure 45:  Membership Functions for Vertical Error (top), Velocity (middle), and Variant 

Acceleration (bottom) for the Collective Controller 
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6.3.5 Yaw Controller 

 

The yaw controller is responsible for all heading changes of the helicopter.  Decisions for 

control are based on a single input: heading error.  Only a single input is required to successfully 

stabilize and control the heading of the helicopter due to the use of the heading hold gyro.  

Utilizing of a heading hold gyro converts all control inputs into rate commands.  If the control 

input is zero then the gyro attempts to keep the angular rate at zero.  If the control input is not 

zero then the gyro attempts to create an angular rate proportional to the control. 

The yaw controller’s input is broken into five fuzzy sets: “bigR” (big right), “right”, 

“small”, “left”, and “bigL” (big left), see Figure 46.  Make note that the “right”, “left”, and 

“small” sets for each input are triangular in shape and sets “bigD” and “bigU” are trapezoidal.  

The “bigD” and “bigU” trapezoidal membership functions extend to -180 and 180 respectively.  

This is to assure that any possible value for these inputs can be appropriately handled by the 

controller. 

The yaw controller contains only five rules.  Although the specific rules are not presented 

here, they are provided in Appendix H.  These rules were designed to simply rotate the vehicle at 

a rate proportional to the error. 

The yaw controller has five possible outputs: “bigR” (big right), “right”, “zero”, “left”, 

and “bigL” (big left).  Each of these outputs is assigned a constant value ranging from [-1,1].  The 

crisp output is determined by averaging the strengths of the fuzzy outputs with their respective 

constants. 

 

 
Figure 46:  Membership Function for Heading Error for the Yaw Controller 
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Table 7:  Output Values for all Controllers 

Controller Outputs 

Roll 

bigL = -0.2 
medL = -0.15 
left = -0.10 
small = 0 
right = 0.10 
medR = 0.15 
bigR = 0.2 

Pitch 

bigF = -0.2 
medF = -0.15 
forward = -0.10 
small = 0 
backward = 0.10 
medB = 0.15 
bigB = 0.2 

Collective 

bigU = 0.2 
medU = 0.15 
up = 0.1 
small = 0 
down = -0.1 
medD = -0.15 
bigD = -0.2 

Yaw 

bigL = -0.15 
left = -0.06 
small = 0 
right = 0.06 
bigR = 0.15 

 

6.4 Stability 

 

Stability is one of the most difficult aspects of controller design.  Proving stability is the 

act of proving that control input will not amplify the error of the vehicle.  This can be done by 

showing that any set of inputs into the system will not create a positive feedback.  Although 

feasible for systems with a small number of inputs, this method becomes unrealistic as the 

number of inputs and range of those inputs increase. 

Stability can also be proven mathematically by comparing the mathematical model of the 

controller with the mathematical model of the vehicle.  This type of proof assumes that both 

models are complete and correct.  This assumption is typically only valid in completely 

controlled environments and with linear based systems.  The mathematical proof concept has also 

been extended to non-linear systems by linearizing the system over small sections.  This type of 

proof assumes that variations between the linearized system and the actual non-linear system are  
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not large enough to cause instability.  This is a heavy assumption as the smallest deviation may or 

may not cause instability. 

Stability proofs are typically extremely difficult in fuzzy based controllers.  This is due to 

the fact that fuzzy controllers are prime solutions for systems that cannot be described accurately 

with a mathematical model.  At this time there is no widely accepted mathematical method for 

proving stability of fuzzy controllers on a non-linear system without an accurate vehicle model.  

True stability for this type of controller can only be proven by exhausting every possible input 

into the system.  In the case of outdoor flight the number of inputs such as wind, temperature, 

weight distribution, gravity deviation, and humidity is infinitely large.  Thus a stability proof 

through exhaustive measures is infeasible. 

Although it seems hopeless that any type of controller could be considered stable for 

controlling a helicopter there are acceptable limitations.  A good example is the case of a human 

operator.  Humans have shown great ability control and navigate highly complex vehicles 

utilizing as little as muscle memory.  Every day tens of thousands of individuals trust their lives 

to the stability of these human operators.  To date there is no mathematical model for human 

beings.  Thus, there does exist some level of stability assurance, or reliability, which is not a 

proof but is widely acceptable. 

Although this work cannot prove stability of the described controllers, the remainder of 

this chapter will be dedicated to supplying a level of reliability. 

 

6.4.1 Feedback Instability 

 

Feedback instability is a situation where updates based on sensed errors causes the 

vehicle to continuously overcorrect thus causing the vehicle to become unstable.  At the lowest 

level the fuzzy controllers tend to have several properties similar to those of open loop 

controllers.  This is due to the fuzzy rules essentially breaking the flight envelope into sections, 

each with a distinct set of rules.  Small alterations during flight will not alter the state of the 

vehicle significantly enough to move the controllers to a new set of rules.  Thus, for short periods 

of time the system will generally be unaffected by feedback.  Even when feedback does affect the 

vehicle the control response is generally in the form of dampening the nominal control.  Nominal 

control represents the open loop type control dictated by the fuzzy MFs.  Utilizing the sensor 

feedback to dampen nominal control prevents the controllers from overcorrecting.  Although this 

method assist in the reliability of the flight controllers it alone could prevent the vehicle from 
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have sufficient control to perform a maneuver.  This type of issue is compensated for by the trim 

integrators. 

Although sensor feedback within the fuzzy controllers creates minimal reliability issues, 

a potentially problematic routine external to the fuzzy controllers exists.  This routine is the 

integration function discussed in Section 5.6.  This routine contains three variables each of which 

represents a trim value for the roll, pitch, and collective controllers.  These trim values are 

designed to offset the outputs of the controllers.  For the roll and pitch controllers this value also 

offsets the angles provided to the controllers, discussed in Section 6.3.5. 

For the integration routine to operate several key factors must be met.  First, the 

positional error of the vehicle must be outside of some threshold of the vehicle.  Second, the 

velocity of the vehicle must be either zero or in the opposite direction of the error.  Third, the 

variant acceleration must be zero or in the opposite direction of the error.  If all of these 

conditions are met the integration routine will increment the variable for that particular controller.  

Thus, for the integration routine to cause instability it would first have to integrate out the error 

causing the routine to run and also integrate in an opposite error that is greater than the original 

error.  This instability integration would have to be completed before the effect of the integration 

could be sensed by the vehicle.  Once the effect is sensed by the vehicle one of the previously 

mentioned conditions would fail to be met and the integration routine would cease to operate.  

Thus, given an integration routine that integrates the trim at a very high rate the system will be 

guaranteed to be unstable.  To assure that the vehicle remains stable due to trim integration one 

would typically consult the vehicle model and adjust the routine accordingly.  As this work 

attempts to generalize the vehicle model we must assume that the utilized vehicle is the worst 

possible case.  Although this case cannot be directly defined it can be reasonably assumed that 

similar vehicles will respond in a similar way.  Experimentation has shown that the integration 

routine takes less than one second to create a visual effect.  Thus, the USL testbed helicopter 

utilizes an integration routine that takes approximately an order of magnitude greater time to 

integrate out error.  Although this decision ensures that automated trimming of the vehicle may 

take tens of seconds to complete it does provide a strong assurance that trim integration will not 

cause the vehicle to become unstable. 

It was previously mentioned that the trim values for the lateral and longitudinal axes are 

used to adjust the sensed Euler angles before they are provided to the controllers.  This is done to 

counteract any external forces on the vehicle.  For example, a strong wind will require that the 

vehicle be slightly leaned to hold a position.  Thus the optimal orientation for hover is slightly 
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offset.  This routine attempts to determine the offset and remove it from the roll and pitch angles 

before they are provided to the controller.  This will force the controller to create outputs based 

on the optimal orientation.  It should be noted that this assumes that the vehicle’s initial state is 

correctly trimmed for flight when no external forces are encountered.  Thus the neutral values for 

the roll and pitch servos should provide an optimal orientation for hover. 

As this function is part of the feedback routine it is a possible source of instability on the 

vehicle.  The angle adjustments made by this function are a linear function of the trim values.  

Although a small change in trim values has a minimal effect on the state of the vehicle a small 

adjustment to the orientation will have a large effect.  Thus the stability of the vehicle is directly 

connected to the slope of the adjustment function.  Through experimentation it was discovered 

that the combination of the trim adjustments and angle adjustments may prevent each from 

reaching optimality.  Although optimality is occasionally not achieved by the individual 

components, the combination of the two components did provide a semi-optimal orientation.   

This showed that even with an incorrect angle adjustment function a level of optimality could be 

accomplished.  As such, the stability of the system can be assured by utilizing an overly small 

slope for the adjustment function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

111

 

 

 

 

Chapter 7 

 Simulation  

 

Although the USL testbed is developed for field testing of UAV technology it is not 

designed to replace simulation testing.  First, field testing requires a large amount of overhead 

time.  The time spent simply moving the equipment to the flight location and prepping the 

vehicles can take hours.  Second, field testing has an inherent level of danger.  Any testing 

performed in the field, no matter what safety precautions are taken, inherently places the vehicle, 

onlookers, and surrounding environment in a potentially hazardous situation.  For these reasons 

initial testing of controllers and most software algorithms are tested in simulation. 

 

7.1 X-Plane 

 

The USL lab utilizes the X-Plane flight simulator for testing and the initial development 

of software for the USL testbed helicopter.  X-Plane is an FAA certified commercial flight 

simulator that supports both fixed wing and VTOL vehicles.  Besides the standard vehicle 

models, X-Plane supports customized vehicles that can be modeled directly in X-Plane. 

 

7.1.1 Communication 

 

X-Plane is one of the few commercial simulators available that will export state data from 

the simulated vehicle and import flight control, both in real-time.  This is inherently important as 

any controller testing would require access to both the state of the vehicle and control inputs.  X-

Plane is able to import and export data through UDP communication.  Update rates for X-Plane 

are configurable between 1 and 50 Hz.  It should be noted that X-Plane will not export or import 

data from the local host (i.e. to IP 127.0.0.1).  Thus, communication and controlling software 

must reside on a separate machine.  For USL, communication and control reside on a laptop.  

This laptop is connected to a desktop running X-Plane via Ethernet and a single dedicated router. 
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Communicating with X-Plane first requires configuring the simulator to import and 

export data.  This first requires selecting the state data that should be passed to the controlling 

machine.  This is done by selection “Data Output” from the “Settings” menu in X-Plane.  This 

will create a window that allows the user to specify which variables in X-Plane will be exported.  

This is simply done by checking the UDP checkbox for any variable desired.  Note that X-Plane 

will output the state data in numerical order, skipping over any unselected variables.  As a 

reference for the list of outputs available from X-Plane could not be found one is supplied in 

Appendix I.  Note that the data provided in Appendix I may or may not vary with X-Plane 

distributions. 

The next step is to select the data rate at which X-Plane will operate.  This variable is 

located in the lower right hand corner of the state data window.  Setting this variable will request 

that X-Plane output a single UDP packet containing all the requested data at approximately the 

selected data rate.  Note that state data will not arrive at the exact data rate selected.  The 

variation in timing is a compilation of network delay and the Windows OS design and is beyond 

the control of the end user.  

The last step in setting up communication is to set the IP and port for exporting and 

importing data.  This is done by selecting the “inet 2” tab from the state data window and setting 

the data receiver and data sender IPs to that of the controlling machine.  Note that X-Plane 

requires the data receiver port be set to 52000 and the data sender port be set to 49000.  It should 

also be noted that firewalls, on either the host or client machine, may block communication with 

X-Plane. 

 

7.1.2 USL Model 

 

Although X-Plane provides some RC model vehicles their flight characteristics were not 

typical to actual RC vehicles.  Thus, USL utilizes a third party open source model, the RC3D, 

available at [96].  This model is designed to represent a 90 size RC vehicle.  As the Joker Maxi 2 

is slightly larger than a 90 size RC helicopter it is lightly tuned by an expert RC pilot to assure 

that the flight characteristics were similar to that of the USL testbed.  Figure 47 depicts the 

modified RC3D model used by the USL.  
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Figure 47:  Depiction of the USL X-Plane Model 

 

7.1.3 Tail Stabilization 

 

It should be mentioned that X-Plane attempts to artificially stabilize several components 

of the vehicle during flight.  To assure that the vehicle is being controlled by the USL software all 

of these stabilization routines were turned off.  This presented a somewhat unique issue as the 

modeled vehicle would not have any heading stabilization.  To account for this a small 

modification is made to the yaw controller mention in Chapter 6.  A second input, velocity, is 

added to the yaw controller.  This velocity input is designed to simulate the heading hold gyro by 

attempting to stabilize the speed at which the heading could be altered.  Figure 48 details the 

membership functions for the modified yaw controller. 

 

 

 
Figure 48:  Membership Function for the Heading Error (top) and Angular Rate (bottom) of the 

Yaw Controller (simulation only) 
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7.2 Simulink 

 

To interface with X-Plane and provide control a Simulink model was designed using 

Matlab.  This model is used to communicate with X-Plane, parse, extract, and calculate data, and 

interface with the fuzzy controllers.  Figure 49 details the contents of the upper level of the 

Simulink model. 

Although X-Plane could have easily been interfaced with the software described in 

Chapter 4, key differences with the format and types of data available coupled with the desire to 

utilize the graphical interface and built-in functionality in Matlab made Simulink a more 

 

 
Figure 49: Upper Level of the Simulink Model Used for Simulation Testing 
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desirable method.  Key differences included X-Plane’s inability to provide accelerations and the 

variations in accuracy and data rate from that of the testbed’s data. 

 To assure that algorithms developed in Simulink were easily portable to and from the 

testbed’s software most key functions, or blocks, were written as S-functions.  S-functions are C 

coded Simulink blocks.  This type of design allowed for code created and tested in Simulink to be 

copied and placed directly onto the testbed.  This is true for the “Roll/Pitch Error” block, “Variant 

Accelerations” block, and to a lesser extent the “Command” block.  Specifics of these S-function 

blocks will be discussed later in this chapter. 

 To store flight data during operation all desired information is multiplexed to the 

workspace.  This provides a multi-dimensional array of data that can be graphed and stored using 

Matlab’s interface. 

 

7.2.1 X-Plane Data Center Block 

 

The “X-Plane Data Center” block (XPDC) is the heart of the Simulink model and is 

responsible for interfacing with the X-Plane simulator.  The XPDC first sets up and binds a 

socket with the X-Plane machine.  This is an initial setup and is only performed once using static 

variables.  Once the socket has been established the XPDC waits for information to arrive from 

the simulator.  Upon receipt, the UDP packet is parsed into a two dimensional array where the 

row represents the data class as defined by X-Plane and the column represents a specific data 

reading for that class.  An example would be using row one to represent Euler angles and 

columns one through three of that row to represent the roll, pitch, and yaw. 

Once the packet has been correctly parsed the heading input is modified.  This is done as 

the Simulink model expects the yaw to range from (-180, 180] where X-Plane provides a heading 

ranging from [0, 360).  Once this modification has been made the parsed data is assigned to its 

respective outputs.  Make note that data received from X-Plane is in network byte order.  Thus, 

the ntohl and ntohf commands are utilized to convert the input into host byte order. 

Last, the XPDC is responsible for packaging and sending UDP control packets to the 

simulator.  Once control data has been received it is packaged into a “data” type UDP package.  

This is done by separating the input into bytes of data and placing them in network byte order.   

The control data is then placed in the UDP packet following the guidelines provided in the UDP 

Reference.html file located in the X-Plane/Instructions directory.  For clarity Table 8 details all of 

the input and output variables associated with this block. 
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Table 8:  Variable Names and Descriptions for the “X-Plane Data Center” Block 

Variable Description Units Range 
Opitch Euler pitching angle of the vehicle. degrees [-180,180]
Oroll Euler roll angle of the vehicle. degrees [-180,180]
Oyaw Euler yaw angle of the vehicle. degrees [-180,180]
Oalt Altitude of the vehicle above the ground. feet [-∞,∞] 
auto_toggle Position of the Auto/Manual toggle switch integer 1 or 0 
Latitude Latitude position of the vehicle. degrees [-90,90] 
Longitude Longitude position of the vehicle. degrees [-180,180]
Vx Velocity down the X, or longitudinal, axis m/sec [-∞,∞] 
Vy Velocity down the Y, or vertical, axis m/sec [-∞,∞] 
Vz Velocity down the Z, or lateral, axis m/sec [-∞,∞] 
Apitch Angular rate of the vehicle in the pitching direction deg/sec [-∞,∞] 
Aroll Angular rate of the vehicle in the rolling direction deg/sec [-∞,∞] 
Ayaw Angular rate of the vehicle in the yawing direction deg/sec [-∞,∞] 
Ipitch Control input for pitch double [-1,1] 
Iroll Control input for  roll double [-1,1] 
Iyaw Control input for yaw double [-1,1] 
Ialt Control input for collective double [-1,1] 

 

7.2.2 Preprocessing Block 

 

The “Preprocessing” block is simply responsible for assuring that data output from X-

Plane is in the same form as the data used by the USL testbed.  Although X-Plane provides the 

data necessary to control the helicopter, this data is sometimes based on axes that are non-

standard.  To account for this data received following a non-standard reference frame are 

modified.  This is accomplished by inverting the sign of any inputs that are reversed from what 

would be expected from the USL testbed.  Figure 50 details the exact contents of the 

“Preprocessing” Block. 
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Figure 50:  Contents of the “Preprocessing” Simulink Block 

 

7.2.3 Command Block 

 

The “Command” block is a Simulink S-function that partially implements the navigation 

process described in 4.10.  The main difference is that the “Command” block only implements 

the section of the navigate process responsible for determining the current goal.  This includes 

determining the desired waypoint and heading during all flight maneuvers (i.e. takeoff, waypoint 

navigation, and landing).  The procedures used within this block for determining the desired 

waypoints and headings follow the description in 4.10.  The only modification to the procedures 

described in 4.10 is that this block does not power up or power down the vehicle.  X-Plane 

initializes the vehicle as powered up and only provides the ability to partially power down the 

vehicle, both of which were deemed unnecessary for simulation.  All waypoints, along with the 

desired headings are hard coded within this block as a multidimensional array. 

Note that the “Command” block is also responsible for outputting a “done” signal to the 

“Finished” block.  This signal represents the lift removal stage of the landing procedure.  This 

signal simply informs the “Finished” block that the vehicle has completed the touch down phase  

 



www.manaraa.com

 

 

118

Table 9:  Variable Names and Descriptions for the “Command” Block 

Variable Description Units Range 
Lat_set Desired latitude of the vehicle degrees [-180,180]
Lon_set Desired longitude of the vehicle degrees [-180,180]
Alt_set Desired altitude of the vehicle feet [-∞,∞] 
yaw_set Desired heading of the vehicle degrees [-180,180]
waypnt_num Identifier for the desired waypoint integer [1,∞] 
Done Identifies if vehicle has finished landing sequence integer 1 or 0 
Hz Data rate from X-Plane integer [1,∞] 
Roll_Error Deviation from the desired position on the rolling axis feet [-∞,∞] 
Pitch_Error Deviation from the desired position on the pitching axis feet [-∞,∞] 
Alt_Error Deviation from the desired position on the altitude axis feet [-∞,∞] 
Yaw_Error Deviation from the desired heading degrees [-∞,∞] 
Reset Resets the waypoint sequence integer 1 or 0 

 

of the landing procedure.  At this point the “Finished” block will overtake the fuzzy collective 

control output and output a constant value designed to remove lift from the vehicle.  For clarity 

Table 9 details the input and outputs associated with this block. 

 

7.2.4 Roll/Pitch Error Block 

 

The “Roll/Pitch Error” block is an S-function that directly implements the algorithm 

discussed in 5.2.  This algorithm determines the lateral and longitudinal offset of the vehicle from 

its goal.  The source code located within this S-function is a literal copy-and-paste from the 

algorithm described in 5.2 and the pseudocode detailed in Appendix G, thus will not be reiterated 

here. 

 

7.2.5 Velocity Block 

 

The “Velocity” block is designed using the Simulink library.  This function is vastly 

different from the velocity function described in Chapter 5.  This is due to the strong variations 

between the data provided by the simulator and the data provided by the actual helicopter.  First, 

velocity on the testbed is calculated by integrating accelerations and then compensating for drift 

in the calculation using GPS calculated velocities.  As the simulator cannot provide accelerations 

this method is not feasible.  Second, the simulator provides GPS position in floating point 
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Figure 51:  Contents of the “Velocity” Simulink Block 

 

notation.  The use of floating point notation significantly reduces the accuracy of the data from 

that of an NMEA message. 

To account for these issues velocity is calculated using X and Y velocities provided by 

the simulator.  This data provides the Simulink model with sub-centimeter velocity in the world 

coordinate frame at 50 Hz.  These components are used to calculate a two dimensional velocity 

vector.  This vector is then transformed to the local coordinate frame which is supplied the roll 

and pitch velocities for the fuzzy controllers.  Figure 51 details the contents of the “Velocity” 

block. 

 The “Velocity” block first calculates the magnitude of the two velocity components.  This 

is performed in the “Magnitude” block using  

2 2Mag Vx Vz= +               (36) 

where Vx  is the velocity component of the X, or longitudinal, axis and Vz  is the velocity 

component of the Z, or lateral, axis.  Next, the angle formed by the velocity vector is calculated in 

the “Vector Angle” block using  
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Note that angV  is computed by dividing by Mag  which may or may not be zero.  This anomaly 

is handled by the “Check for zero Mag” block discussed later in this section.  As the components 
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of the velocity vector are in the world coordinate frame the computed angle is a value, in degrees, 

from north.  This computed angle is then subtracted from the heading of the vehicle producing 

offV .  This offset is then used to rotate the X and Y components of the velocity vector to the local 

coordinate frame.  This is performed in the “Rotate to Local Frame” block using 
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        (38) 

to calculate a velocity in the roll direction and  
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        (39) 

to calculate a velocity in the pitch direction.  Last, a check is performed by the “Check for zero 

Mag” block to assure that the magnitude is not zero.  This block simply assigns RtmpV to Vr  and 

PtmpV to Vp  if Mag  is non-zero.  If Mag  is zero Vr  and Vp  are assigned a value of zero. 

 

7.2.6 Calc Yaw Error Block 

 

The “Calc Yaw Error” block is simply used to determine the deviation, in degrees, from 

the current heading to the local heading.  It should be mentioned simple subtraction of the desired 

heading from the current heading is insufficient.  This type of calculation could result in a 

deviation greater than 180 degrees.  Thus a check must be performed to account for this anomaly 

and appropriate adjustments made.  To adhere to these issues the “Calc Yaw Error” block assigns 

output using 
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         (40) 

where EH  is the heading, or yaw, error and setH  is the heading set point. 

 

7.2.7 Variant Accelerations Block 

 

The “Variant Accelerations” block is an S-function that attempts to calculate 

accelerations from velocity.  This block is a variation of the algorithm described in 5.5.  Due to 

the precision of the data provided by the simulator filtering is deemed unnecessary.  Thus this 

block simply calculates the change in velocity between consecutive operations.  This change is 

then divided by the amount of time passed between operations.  Note that this calculation is 

performed using velocities in the local coordinate frame.  Thus the accelerations generated by this 

block are also in the local coordinate frame and do not need to be rotated before being supplied to 

the controllers. 

 

7.2.8 Fuzzy Controllers Block 

 

The “Fuzzy Controllers” block is responsible for supplying the appropriate data to the 

fuzzy controllers.  Figure 52 depicts the contents of the “Controller” block.  It should be 

mentioned that the “Delay” blocks shown throughout the Simulink model are designed to 

synchronize the model.  Without these blocks the model does not know where to pause to wait for 

new data.  All delays within the Simulink model are arbitrarily set to 0.001. 

The “Controllers” block is also responsible for adding trim values to the output of the 

fuzzy controllers.  These trim values were determined through trial and error and are simply an 

attempt to counteract any constant offsets. 
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Figure 52:  Contents of the “Controllers” Simulink Block 

 

7.2.9 Manual Takeover Block 

 

The “Manual Takeover” block is designed to simulate the ability to remove or grant 

computer control of the helicopter from a radio controller, see Figure 53.  This is done utilizing 

the USB radio controller supplied with the Realflight G2 simulator.  This simulator is not used in 

the development of the USL helicopter testbed but is utilized to train safety pilots.  Utilization of 

the G2 controller required the Matlab joystick toolbox and minor Windows XP setup. 

 
Figure 53:  Contents of the “Manual Takeover” Simulink Block 
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Setting up the joystick for Microsoft Windows simply requires running the joystick 

calibration wizard.  The wizard is simply used to find the center and endpoints of the controller.  

Once calibrated the controller can be used by the Matlab joystick toolbox. 

 The “Manual Takeover” block is responsible for gathering and parsing data from both the 

radio controller and the fuzzy controllers.  Parsing of the joystick data is accomplished by using 

the “Joystick Parser” S-function.  This block takes in two one dimensional arrays from the 

“Joystick Input” block.  These arrays correspond to the X and Y positions of the two RC sticks 

and the positions of all buttons and levers.  Through trial and error the data of each individual 

element is discovered and piped to its appropriate output.  The “Joystick Parser” has five outputs.  

Four of these five outputs are the counterparts for the roll, pitch, yaw, and collective commands 

output by the fuzzy controllers.  The fifth output is the position of one of the levers located on the 

radio controller.  This lever is used to determine which set of outputs will be passed out of the 

“Manual Takeover” block.  If the lever is high, or equal to one, the outputs from the fuzzy 

controller are passed through the “Manual Takeover” block.  If the lever is low, or equal to zero, 

the outputs of the radio controller are passed through. 
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Chapter 8 

Experiments and Results 

 

Due to the shear breadth of this research the experimentation had to be performed on 

multiple levels.  This included testing and validation of individual sections of the work and 

testing throughout the integration phase.  Experimentations were performed in lab settings, 

simulations, and outdoors depending on the specific type of experiment.  Types of 

experimentation included endurance, heat, shock, vibration, payload limitations, CPU utilization, 

and controller validation.  

 

8.1 Payload 

 

Payload experimentations were performed to determine the absolute maximum weight 

that could be carried by the vehicle.  This allowed the USL lab to determine the size and types of 

sensors and processing equipment that could be utilized by the vehicle as well as the size and 

types of materials that could be used to design mounts and hardware. 

The payload limitation was determined by increasing the weight of the vehicle until the 

vehicle failed to operate correctly.  Increasing the vehicle’s weight was done by adding half 

pound weights to the skids of the vehicle after a successful payload flight.  Note that these 

weights were added in a manner that would assure the weight was equally distributed around the 

main shaft.  Failure was determined by an expert RC pilot and was judged based on the handling 

characteristics of the vehicle.  If at any point the vehicle was unable to maintain altitude or 

became unstable the payload was considered a failure.   

Experimentation showed a maximum payload of approximately 5.5 kg above the stock 

vehicle’s flight weight.  This was deemed the maximum payload as the vehicle showed a large 

degree of degradation in both head speed and response when loaded and flown with a payload of 

5.5 kg.  Stock weight is defined as the weight of the unmodified Joker Maxi-2 kit with all the 

necessary equipment to fly, i.e. batteries, servos, radio receiver, etc.  For safety and longevity of 

the equipment the maximum payload for the USL testbed was set at 4.5 kg. 
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8.2 Endurance 

 

Endurance experiments were performed on all batteries utilized on the testbed.  This 

included the batteries utilized to power the vehicle, servos, SSC, and processing system.   

The first battery tested was the processing system’s battery.  This battery powers the 

motherboard and all sensors on the vehicle, see Chapter 3.  It should be noted that the endurance 

of this battery is heavily dependent on the sensors and CPU utilization.  As such, the overall 

endurance of this battery will decrease as the use of active sensors or CPU utilization increases.  

To assure that an operational threshold for this battery was known, several endurance experiments 

were performed using the best and worst cases scenarios. 

The first experiment was designed to represent the best case scenario.  This scenario 

included powering the motherboard and all external sensors and running only the basic operating 

system.  Thus, sensors would be powered but not transmitting data, wireless communication 

would be idle, and the CPU usage would be regulated simply by the OS’s overhead.  This was 

performed by booting the processing system and utilizing its power supply to power all external 

sensors.  Once the system was booted it was left in its idle state.  The 11.1V 4.2Ah LiPo battery 

reached a critical low approximately 1.5 hours after being powered.  This value was determined 

to be the absolute longest the processing system could be expected to perform using this battery.   

The second experiment was designed to represent the worst case scenario.  This scenario 

included powering all processing system hardware, requesting continuous updates from all 

sensors at their maximum throughput, attempting to utilize 100% of the CPU, and attempting to 

use 100% of the wireless bandwidth.  This was accomplished utilizing several startup scripts that 

were automatically executed once the boot process was complete.  These scripts requested 

continuous outputs from all sensors, setup a continuous broadcast of data to a remote machine, 

and initialized a simple process targeted at CPU utilization.  CPU utilization during the 

experiments varied between 96% and 100%.  The battery reached a critical low 45 minutes after 

being powered.  This value was determined to be the absolute minimum that the processing 

system could be expected to perform using this battery. 

Endurance testing for the safety switch battery was performed simply by powering the SSC with 

the 11.1V 0.5Ah LiPo.  This was deemed sufficient as the SSC will continuously update its 

outputs regardless of the servo’s or computer’s state.  As the SSC requires a minimum of 10V to 

operate, the battery was considered expelled when the voltage reached 10V.  The battery reached 

10V approximately 18 hours after being powered. 
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Table 10:  Maximum Operation Times of Batteries 

Battery 
Maximum 
Endurance 

USL Set 
Maximums 

11.1V 4.2Ah LiPo 45-90 minutes 40 minutes 
11.1V 0.5Ah LiPo 18 hours 10 hours 
4.8V 2.0Ah NiMh 45 minutes 30 minutes 
37V 10Ah LiPo 16-17 minutes 12 minutes 

 

The servo battery, 4.8V NiMh, was tested by averaging the usage of multiple flights of 

the vehicle.  This was done as the endurance of the battery is dependent on the motion of the 

servos.  In an attempt to simulate the average servo movement the vehicle was flown by the 

safety pilot.  Flights continued until the voltage dropped to 4.4V during servo movements.  This 

voltage was considered the absolute lowest that should be reached while the servos were in 

motion.  Voltage drop was determined by an LED battery indicator on the vehicle which glowed 

red when the servo battery reached 4.4V.  Averaged flight times showed an approximate 

endurance of 45 minutes. 

The last battery tested for endurance was the Joker Maxi 2’s main battery.  These 

experiments were performed by flying the testbed, fully equipped, until the 37V 10Ah LiPo 

reached either a critical low voltage, 33V, or became difficult for the pilot to fly.  The average 

endurance was calculated to be between 16 and 17 minutes. 

It should be noted that the endurance of individual batteries is a function of their age and 

usage.  As such the endurance of the equipment they power is a function of the batteries age and 

usage.  To account for this the maximum safe operation times for each battery was reduced.  

Table 10 details the maximum operation times for each battery as defined in the USL testbed 

operating protocol. 

 

8.3 Shock & Vibration 

 

Helicopters are naturally subject to high frequency vibrations.  These vibrations are 

caused by the main and tail rotor blades as well as the vehicle’s motor.  Although RC vehicles are 

designed to cope with these vibrations the hardware added by USL was not specifically designed 

for that operating environment.  To assure that the USL testbed could operate without serious 

failure several experiments were performed.  These experiments were designed to test the  
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additional hardware’s ability to withstand the rotorcrafts vibrations as well as possible shock due 

to “hard” landings. 

Successful operation during nominal flight was tested by running all of the on-board 

hardware and software during multiple human controlled flights.  The first set of flights was 

designed to determine if any failures would be experienced during normal flight.  These flights 

consisted of the RC pilot performing non-aggressive maneuvers such as slow (<20degrees/sec) 

heading changes, point to point flight (< 5 ft/sec), and takeoff and landings.  Normal flight 

produced zero hardware failures. 

Next the testbed was subjected to aggressive flights.  The first of these flights included 

obtaining speeds exceeding 35 ft/sec and angles greater than 45 degrees.  The testbed was also 

subjected to heading rotations exceeding 180 degrees per second.  These tests were performed to 

determine if the testbed could withstand the extreme aggressive maneuvers capable of this 

vehicle.  Flight test showed zero hardware failures. 

It should be noted that throughout the life of the testbed several extreme flight conditions 

have been inadvertently tested.  These conditions include “hard landings” and violent flight 

maneuvers.  All but one of these test were the result of human error.  These “mishaps” were 

advantageous as it further shows the stability and operational abilities of the testbed.  The first of 

these “mishaps” were two “hard landings”.   

For the purpose of this work hard landings are defined as landings that physically caused 

damage to the vehicle.  The first of these hard landings was due to the safety pilot inadvertently 

toggling the motor kill switch.  This caused the vehicle’s motor to shutdown approximately 100 ft 

above ground level.  Although an autorotation was attempted the main rotor had significantly 

slowed before the safety pilot was aware the motor had shutdown.  The safety pilot was able to 

orient the vehicle correctly before landing but the shear impact significantly distorted the chassis, 

broke one weld, and cracked a second weld.  Although the shock caused structural damage to the 

chassis the testbed hardware was not damaged.  Repairing the vehicle to optimal performance 

only required that the chassis be reshaped and welded.  Note that this was an early phase of 

development and that the laser range finder had not yet been mounted to the system. 

The second hard landing experienced by the USL testbed was caused by a poorly 

soldered connector on the main vehicle battery.  This solder broke during flight causing the motor 

to shutdown approximately 100 ft above ground level.  This hard landing also caused distortion 

and cracked welds on the chassis.  The chassis was again repaired restoring the testbed to 

operating condition.  It was noted that intermittent failures of the laser were experienced after this 
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particular hard landing.  These failures were difficult to reproduce and were only periodically 

experienced during takeoff or landing.  This laser was eventually replaced. 

Multiple “mishaps” have occurred during the software development phase of the vehicle 

design due to software bugs.  Although numerous bugs were created during this phase of 

development several caused violent flight maneuvers.  These are described here only to show that 

testbed is capable of surviving violent and out of the ordinary conditions.  The two main 

maneuvers of interest were caused by bugs which increased controller outputs by ten fold.  As the 

controller outputs are hard limited this condition caused the testbed to only output the two most 

extreme output values.  This type of bug was experienced by both the pitch and yaw controllers 

on two separate occasions.  This output caused the vehicle to violently flail about on the miss 

controlled axis.  Although control was removed within a few seconds of the failure, this provided 

a level of confidence about the testbed’s ability to operate under the most extreme flight controls 

of the vehicle. 

 

8.4 Heat 

 

Due to the desire to protect the processing system from environmental hazards as well as 

electronic interference the enclosure is almost completely sealed.  Sealing the enclosure raised 

issues about the processing system’s ability to function without proper heat ventilation.  As the 

enclosure is exclusively made from wood the heat dissipation from within the enclosure is very 

minimal.  To assure that processing system could function without proper ventilation several 

experiments were performed.   

Testing for heat related failures was performed by operating the processing system for 

long periods of time.  These experiments were performed in a lab environment to remove the 

cooling effect caused by the downwash of the main rotor.  These experiments varied from only a 

few hours up to three days.  Even after three days of continuous operation the processing system 

operated without failure.  Internal temperatures during experimentation reached 168 degrees for 

the system and 150 degrees for the CPU. 
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8.5 CPU Utilization 

 

As this work describes a helicopter testbed capable of multiple areas of development, the 

processing system must have free clock cycles available during operation.  To determine the 

amount of CPU available during flight the testbed was initialized and operated as for normal 

flight.  CPU utilization during flight varied between zero and two percent and averaged 

approximately 0.8 percent.  It should be noted that initial controller development was designed 

using Mamdani fuzzy logic.  This method utilized up to 40% of the processor during operation.  

The controllers were then ported to use Sugeno fuzzy logic which significantly reduced the CPU 

utilization. 

 

8.6 Controller Validation 

 

To validate the controllers developed for the USL testbed multiple experiments were 

performed.  These experiments included multiple flights using multiple flight patterns under 

varying environmental conditions.  Experiments were performed in both simulation and on the 

actual hardware in an outdoor environment. 

 

8.6.1 Simulation Experiments 

 

Simulation experiments were performed utilizing the X-Plane simulator and Matlab 

2006a, see Chapter 7.  Experiments were performed with and without wind.  These experiments 

included hovering and waypoint navigation.  Two forms of waypoint navigation were performed 

including navigation that required the vehicle stop and stabilize at each individual waypoint and 

navigation that did not allow the vehicle to stabilize at any waypoint.  The overall flight envelope 

tested in simulation is available in Table 11. 

 

Table 11:  Flight Envelope Tested in Simulation 

Variable Range 
Flight Speed 0-10 mph 

Wind 0-23 mph 
Wind shear 0-20 degrees 
Wind gusts 0-23 mph* 

   *Total wind speed did not exceed 23 mph 
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Figure 54:  Positional Error for Zero Wind Hovering 

 

Hovering test varied in length of time from several minutes to several hours.  These tests 

were first performed using zero wind.  Figure 54 depicts the positional error over time in the 

lateral, longitudinal, and vertical directions for a single experiment.  Note that the vehicle was 

commanded to a hovering position while landing.  This was done by requesting a hover at a 

predefined point directly above the vehicle and then relinquishing control to the fuzzy controllers.  

This caused the vehicle to immediately begin increasing in altitude while attempting to hold its 

position.  This is apparent from the altitude error graph in Figure 54. 

To assure that vehicle could sustain a hover under varying wind conditions a constant 

wind with constant direction was added to the simulation.  These tests varied in length of time 

from several minutes to several hours.  Figure 55 depicts the positional error over time in the 

lateral, longitudinal, and vertical directions for a single experiment.  The constant velocity 

utilized during these experiments was 5 kt.  These experiments also commanded the vehicle to a 

predetermined position from a landing. 
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Figure 55:  Positional Error for Constant Wind Hovering 

 

Although the previous two sets of experiments provided some level of confidence in the 

controllers abilities to hover the vehicle they were not realistic for outdoor environments.  

Outdoor environments typically contain wind gust of varying direction and magnitude.  To assure 

that vehicle could safely operate in an outdoor environment experiments were performed using 

wind with dynamically changing speeds and direction.  Figure 56 depicts the positional error over 

time in the lateral, longitudinal, and vertical directions for a single experiment.  The maximum 

wind speed obtained during these simulations was 5kt with a wind shear ranging from zero to 20 

degrees. 
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Figure 56:  Positional Error for Dynamic Wind Hovering 

 

The first sets of flight paths performed were designed to maneuver the vehicle to several 

waypoints stopping at each for two seconds.  Like hover, these experiments were performed 

without wind, with constant wind, and with dynamic wind.  Figures 57-59 detail the flight paths 

of several experiments using each of the three types of wind effects.  Make note that the desired 

flight paths for all experiments performed in this section are rectangular.  Also note that at each 

waypoint the vehicle was command to rotate in the direction of the new flight path.  Thus, the 

vehicle is always moving in the forward direction. 
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Figure 57:  3D (left) and Birds-Eye-View (right) of a Square Flight Path with No Wind 

Effects and Stopping at Each Waypoint 
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Figure 58:  3D (left) and Birds-Eye-View (right) of a Square Flight Path with a 5kt Wind 

and Stopping at Each Waypoint 
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Figure 59:  3D (left) and Birds-Eye-View (right) of a Square Flight Path with a 5kt Wind, 

20 Degree Wind Shear, and Stopping at Each Waypoint 
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The last set of flight paths performed were designed to maneuver the vehicle to several 

waypoints without allowing the vehicle to stabilize between waypoints.  These experiments were 

designed to discover the controller’s reactions to more dynamic flights.  Like the previous 

simulation experiments, these experiments were performed without wind, with constant wind, and 

with dynamic wind.  Figures 60-62 detail the flight paths of several experiments using each of the 

three types of wind effects.     
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Figure 60:  3D (left) and Birds-Eye-View (right) of a Square Flight Path without Stopping at 

Waypoints 
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Figure 61:  3D (left) and Birds-Eye-View (right) of a Square Flight Path with a 5kt Wind 
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Figure 62:  3D (left) and Birds-Eye-View (right) of a Square Flight Path with a 5kt Wind and 20 

Degree Wind Shear 
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8.6.2 Field Experiments 

 

Although simulation experiments provide a level of assurance in the ability of the 

controllers they are far from conclusive.  The controllers were designed to operate on a helicopter 

testbed and therefore must be validated on the actual hardware in realistic environments. 

The USL helicopter was tested in a non-optimal outdoor environment on the University 

of South Florida (USF) campus.  This test area is approximately 70 meters wide and 100 meters 

long.  The test area is surrounded by multiple buildings including a four story parking garage to 

the north west, a three story office building to the north, and a four story office building to the 

south.  This environment created varying wind effects and less than optimal GPS reception.  

Figure 63 visualizes the testing environment.   

Field experiments included waypoint navigation, hovering, takeoff, and landing.  These 

experiments were first performed individually and then as an integrated set.  The overall flight 

envelope tested in the field is available in Table 12. 

 

 
Figure 63:  USL Test Area 
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Table 12:  Flight Envelope Tested in the Field 

Variable Range 
Flight Speed 0-5 mph 

Time Day & Night 
Wind 0-15 mph 

Wind shear 0-5 degrees 
Wind gusts 0-5 mph 

Cloud Cover Clear-Overcast 
Rain Clear-Misting 

 

Hovering was naturally the first outdoor experiment to be performed on the testbed.  

These experiments were performed by having the safety pilot takeoff the vehicle and position it in 

a hover approximately 50 ft off of the ground.  Once the vehicle was stable the safety pilot 

relinquished control to the testbed.  The testbed was then responsible for holding the position 

where it was located when control was relinquished.  Figure 64 details the positional error over 

time that occurs during a continuous hover in a very light wind with very moderate gusts.  Note 

that the first 35 to 40 seconds of flight contained a strictly positive longitudinal error.  This error 

was partially due to the longitudinal wind and vehicle setup.  Note that this strictly positive error 

was consistently reduced and eventually removed from the vehicle.  This is a product of the trim 

adjusters compensating for the lack of progress towards the goal.  It should be mentioned that 

position data used to plot all of the figures in this section were gathered directly from the GPS 

unit.  As such, all of gathered position data are subject to the errors and noise associated with 

GPS.  To compensate, various videos of autonomous flight are available with the original 

dissertation, on file with the USF library in Tampa, Florida, or available at 

www.uavrobotics.com. 
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Figure 64:  Positional Error During Hover 

 

Once hovering had been sufficiently tested experiments were performed to validate the 

controller’s abilities to maneuver between points.  These experiments consisted of the safety pilot 

taking off the vehicle and positioning it in a hover approximately 50 ft above the ground.  The 

safety pilot would then relinquish control and the vehicle would begin transitioning hard coded 

waypoints.  Once the vehicle had transitioned the entire set of waypoints it would maintain a 

hover at the last waypoint.  Figure 65 details a typical path followed by the testbed while 

performing a square pattern of four waypoints. 
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Figure 65:  Birds-Eye-View of Square Flight Path (top) and Altitude Error (bottom) 

 

Once the vehicle had shown a consistent ability to successfully perform flight maneuvers, 

experiments were performed to validate the controller’s ability to takeoff and land successfully.  

These experiments required the safety pilot to relinquish control before the vehicle was powered 

up.  Once control was relinquished the vehicle would power up the main rotor and lift off.  After 

a predetermined altitude had been reached the controller began the landing phase of the 

experiment.  Once the vehicle had successfully landed the main rotor was powered down.  Figure 

66 details the vertical error as well as the lateral and longitudinal positions during one of these 

experiments.  Note that lateral and longitudinal errors during takeoff are due to the extreme shifts 

in both the direction and magnitude of accelerometer drift.  These errors will eventually be 

removed by the drift calculation described in Section 5.4. 
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Figure 66:  Lateral Error (top), Longitudinal Error (middle), and Altitude (bottom) for a Typical 

Takeoff and Landing Experiment 

 

The last step in testing the controllers was to perform flights that were integrated sets of 

all the abilities programmed into the testbed.  This included takeoff, landing, hovering, and 

navigation.  These experiments included several flight patterns including the square-s, straight 

line, and vertical steps.  Note that vertical steps are transitions in the longitudinal and vertical 

axes.  Figures 67-69 detail the flight paths of the testbed for all three flight patterns. 
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Figure 67:  Vertical Steps Flight Path 
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Figure 68:  Straight Line Flight Path 
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Figure 69:  Square-S Flight Path 
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Chapter 9 

Conclusions & Future Work 

 

9.1 Conclusion 

 

This research presented the full design and implementation of an unmanned helicopter 

testbed designed by USL.  This vehicle was specifically designed to support removal, 

modification, and replacement of both hardware and software as deemed necessary by the end 

user.  This is made possible through the design and implementation of modular hardware and 

software as well as the use of COTS components.  This vehicle has performed over two hundred 

fully autonomous flights and represents one of only a handful of fully autonomous helicopters in 

the world.  It is distinct due to its ground up design as a testbed vehicle and furthers the UAV area 

of research by fully disclosing the design and implementation of the system.  It is this 

researcher’s hope that this work will provide the opportunity and motivation for others to join and 

help further this technology. 

 

9.2 Future Work 

 

The USL helicopter testbed has shown the ability to autonomously navigate waypoints, 

hover, takeoff, and land as well as the ability to filter and fuse data without relying on a vehicle 

specific model.  The possible future work that can be accomplished from this point is almost 

limitless.  The vehicle is designed for modification and testing and as such lends itself to a 

multitude of areas.  This includes vision processing, controller design, software architecture 

design, hardware design, filtering and fusion, and mechanical design to name only a few. 

Foreseeable work in the immediate future would most likely include controller updates 

that attempt to separate uncontrollable forces into external and internal categories and correctly 

compensate for these forces.  Controllers could also be updated or developed to utilize state 

feedback to permanently modify the controller’s outputs.  One specific feedback update would be  
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to allow the acceleration variant to permanently update the desired angle calculated by the 

controller. 

Another foreseeable update includes mounting and testing the chassis and processing 

system on other platforms.  This could include variations of types and sizes of helicopters as well 

as other types of unmanned vehicles including fixed wing aircraft and ground vehicles.  Note that 

ground vehicle usage has been tested to a limited degree in [97] and [98] where the processing 

system, sensors, and software described in this work were ported to a four wheel drive RC truck.  

This UGV has been utilized in UAV/UGV coordination, swarm control, and pattern formation. 

Vision, although only briefly mention in this work, could also provide a large amount of 

information about the state of the vehicle as well as provide the vehicle the ability to accomplish 

many more tasks.  Types of information could include state data regarding the velocity, relative 

position to an object, or even failure detection for the vehicle.  Vision processing algorithms 

could also provide the vehicle the ability to identify and track objects, perform statistical 

calculations, and be readily fault tolerant. 

Although it is not detailed in this work the use of a Graphical User Interface (GUI) would 

greatly improve the appeal of this testbed.  This interface could easily be designed to allow users 

to dynamically change flight paths and gather information in a more user friendly environment. 
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Appendix A Parts List 

 

Table 13: COTS Parts List for the USL Helicopter Testbed 

Hardware Distributor Model/Part Information Quantity
        

Processing System       
Frame Grabber Vox Technologies VTC 4749 Model IVC-200G 1 

Flexible PCI Extender 
Adex Electronics, 

Inc. PCIRX4-FLEX-A5 1 
Wireless Card XP Passport Intel Pro 2200 B/G 1 
Motherboard Mini-itx.com G5M100-N 1 

CPU Newegg.com Pentium M 755 1 
Fan/Heat Sink Eaglebit.com CoolJag SEA-A2 1 

RAM 
Crucial 

Technology CT2KIT12872Y335 (2 Gig kit) 184-Pin 1 
Power Supply Mini-itx.com picoPSU-120 1 

2.4GHz antenna Fab-Corp 5.5 dBi R-SMA Rubber Duck Antenna 1 
2.4GHz cable Fab-Corp 6 in Hirose U.FL to R-SMA Female 1 

Phono Jacks Radio Shack 
Board with Four Standard-Type Phono 

Jacks (274-322) 1 
Power switch Digi-key Corp. EG1512-ND 1 

        
GPS       
GPS Navtech GPS SSII-5-5Hz (Superstar 2) PVT 1 

GPS Extension Cable Navtech GPS 
700016 RF cable MCX to SMA Female 

Bulkhead, 6 in 1 
GPS Antenna Navtech GPS GAACZ-A41 13DB 5V SMA 1 

TTL to USB Adapter 
Mouser 

Electronics Inc. DLP-TXRX-G 1 
USB Cable Provantage USB Type A to Mini-B Cable 1 
Wire Mesh TWP Inc. TWP Part #: 022X022C0150W48T < 1 sqft
Heat Shrink Batteryspace.com PVC-28 (1 1/8 inch PVC) < 1 ft 

GPS Connector Samtec TCSD-10-S-06.00-01 1 
Voltage Regulator Radio Shack 5V 1A 7805A Regulator 1 

Double Sided Foam Tape Amazon.com 4008 (3M 1" Double-Sided Foam Tape) 1 
        

Enclosure       
EMI Foil 3M 1345 Tape (23 inch width) ~ 3 sqft
Basswood Hobby Town USA 3mm Thick Basswood < 2 sqft

Wood Glue Lowes Elmer's Wood Glue < 8 oz 
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Appendix A (Continued) 

 

Table 13 (Continued) 

Double Sided Servo Tape Tower Hobbies 
DTXR1215 (DuraTrax Servo Tape 

1x36") 1 
Masking Tape Lowes 00-05130-01 (Clean Release Tape) < 1 ft 

        
Pan/Tilt       
Servos Tower Hobbies Hobbico CS-59 Lo Profile 2 

Small Gears Qtcgears.comm KPS1-45 (45 Teeth Plastic Spur Gear) 2 
Large Gears Qtcgears.comm KPS1-28 (28 Teeth Plastic Spur Gear) 2 

        
Chassis       

Rubber Isolation Mounts SDP-SI A10Z 2-302A 4 
Rubber Isolation Mounts SDP-SI A10Z 2-301B 4 

        
Camera       

Camera 
Aegis Electronic 

Group Inc. FCB-EX980S 1 

Camera Interface Board 
Aegis Electronic 

Group Inc. IFB-EX232 1 
Video Transmitter Eyespyvideo.com THX-9100 1 

D-sub 9 Serial Connectors Allelectronics.com
9-PIN Female D-sub Connector, IDC 

Style 1 
Heat Shrink Batteryspace.com PVC-126 (1 1/8 inch PVC) < 1ft 

Transmitter Power Conn. Radioshack 274-1569 (Size M Coaxial DC Pwr Plug) 1 
Futaba Connector Tower Hobbies EMS Female Connector J 1 
Futaba Connector Tower Hobbies EMS Male Connector J 1 

        
IMU       
IMU Microstrain 3DMG-X1 1 

Voltage Regulator Medusa Research 6V 1.5A MR-BEC-35015-6 1 
Futaba Connector Tower Hobbies EMS Male Connector J 3 
Futaba Connector Tower Hobbies EMS Female Connector J 2 

        
Laser       
Laser Acroname Hokuyo URG-04LX 1 
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Appendix A (Continued) 

 

Table 13 (Continued) 

Laser Connector (Shroud) Digi-key Corp. PHR- 8 1 
Laser Connector (Pins) Digi-key Corp. SPH-002T-P0.5S 1 

Futaba Connector Tower Hobbies EMS Male Connector J 1 
Electrical Tape RadioShack 64-2375 (3/4" Electrical Tape) < 5 ft 

        
SSC Interface Board       

SSC Header Digi-key Corp. 8844FE-ND (DB44 Female HD DIP) 1 
Headers (Double Sided) Sametc TSW-137-16-T-S 1 
Headers (Single Sided) Digi-key Corp. WM6436-ND 1 

SSC Microbotics Servo Switch/Controller 1 
RS232 to USB Adapter Mouser UC232R 1 

Battery  Thunder Power TP730-3SJPL 1 
Futaba Connector Tower Hobbies EMS Male Connector J 2 

Power Input Connector   Ultra Dean Male Connector 1 
        

Helicopter       
Helicopter Kit Joker USA Joker Maxi 2 Kit 1 

Main Rotor Blades Joker USA Joker Maxi 2 Symmetrical Blades 1 
Tail Rotor Blades Joker USA Joker Maxi 2 Tail Blades 1 

Motor Joker USA Plettenberg HP 370/40/A2 Heli 1 
Speed Controller Joker USA Schulze Future 40/160H 1 

Servos Tower Hobbies Futaba S9250 Digital Servos 3 
Gyro Tower Hobbies Futaba GY401 w/ 9254 Digital Servo 1 

Receiver Tower Hobbies R319DPS 9 Channel Receiver 1 
Battery  Tower Hobbies HydriMax 4.8 2 Ah NiMh 1 

Battery Switch Tower Hobbies HCAM2761 HD Switch Harness 1 
Battery  Austin Else LLC Joker Maxi 2 37V 10Ah LiPo 1 

        
Power Cable       

Low Voltage Alarm Heliproz.com HRPoly X Low Voltage Warning Device 1 
Ultra Dean (Male) Tower Hobbies W.S. Deans Male Ultra Plug 1 

Ultra Dean (Female) Tower Hobbies W.S. Deans Female Ultra Plug 1 
Power Cable RadioShack 278-567 (18 Gauge Speaker Wire) < 1 ft 

        
ESC Power Adapter Cable       

Ultra Dean (Male) Tower Hobbies W.S. Deans Male Ultra Plug 2 
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Appendix A (Continued) 

 

Table 13 (Continued)  

Ultra Dean (Female) Tower Hobbies W.S. Deans Female Ultra Plug 1 
Power Cable RadioShack 278-567 (18 Gauge Speaker Wire) < 1 ft 

        
Misc       

Servo Safety Clips Tower Hobbies LXDT85 4 
Battery  Thunder Power THP 4200 3S2P PL 1 

Servo Wire Tower Hobbies Hitec HD Servo Wire 20GA < 25 ft
Spiral Cable Wrap RadioShack 278-1638 (3/8" Spiral Cable Wrap) < 10 ft
J Male Connectors Tower Hobbies EMS Unassembled Male Connector J 30 

J Female Connectors Tower Hobbies EMS Unassembled Female Connector J 10 
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Appendix B Servo/Safety Controller Interface Schematic 

 

 This appendix details the schematic for the wiring of the SSC interface board.  “In” and 

“out” components are for servo connections where pin 1 represents the PW signal, pin 2 

represents the 5V power, and pin 3 represents the respective ground.  For the “battery” 

component pin 2 represents the power input for the SSC and pin 3 represents the respective 

ground.  For the RS-232 component pin 1 is the TX wire, pin 2 is the RX wire, and pin 3 is the 

communication ground.  DB 44 HD represents the 44 pin high density connector used to mate 

with the SSC. 

 

 
Figure 70:  SSC Connections Schematic 
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Appendix C Chassis Schematics 

 

The Chassis is the largest of all the custom made components of the USL testbed and 

encompasses the Chassis frame and the enclosure mounting plate.  Make note that all 

measurements are in millimeters. 

 

C.1 Chassis 

 
Figure 71:  Top View of the USL Chassis 
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Appendix C (Continued) 

 

 
Figure 72:  Side View of the USL Chassis 

 

Note that in Figure 73 is only designed to detail the arc of the bends in the chassis and is 

not a rear view of the chassis.  Both arcs on the USL chassis are identical and only vary based on 

their height above the bottom of the chassis, see Figure 73. 
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Appendix C (Continued) 

 

 
 

Figure 73:  Schematic of the Arcs on the Chassis 
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Appendix C (Continued) 

 

 
Figure 74:  3D View of the Assembled Chassis 
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Appendix C (Continued) 

 

C.2 Enclosure Mounting Plate 

 

 
Figure 75:  Top View of the Enclosure Mounting Plate 

 

C.3 Chassis Mounting Adapter 

 

The chassis mounting adapter is a 3mm aluminum plate used to mount the custom 

aluminum chassis to the stock skid mounts on the Joker Maxi-2 helicopter.  Note that two 

identical adapters are needed to fully install the chassis. 

 

 
Figure 76:  Top View of Chassis/Helicopter Mounting Adapter 
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Appendix C (Continued) 

 

 
Figure 77:  Side View of Chassis/Helicopter Mounting Adapter 
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Appendix D Pan/Tilt Schematics 

 

The pan/tilt schematics consist of the camera’s upper and lower brackets and the servos 

upper and left brackets.  Note that all the hardware described in this section is formed from 3mm 

thick aluminum.  Also note that measurements marked with an ‘*’ represent measurements that 

are from the center of the hole.  This notation is only used where the location of measurements 

may be confusing. 

 

D.1 Camera Upper Bracket 

 

 
Figure 78:  3D Perspective of the Upper Camera Bracket 

 

 
Figure 79:  Flattened View of the Upper Camera Bracket 
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Figure 80:  Side View of the Upper Camera Bracket 
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Appendix D (Continued) 
 
D.2 Camera Lower Bracket 

 
Figure 81:  3D Perspective of the Lower Camera Bracket. 

 

 
Figure 82:  Flattened View of the Lower Camera Bracket. 
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Figure 83:  Side View of the Lower Camera Bracket 

 

D.3 Servo Upper Bracket 

 
Figure 84:  Top View of the Upper Servo Bracket 
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Appendix D (Continued) 
 

 
Figure 85:  3D Perspective of the Upper Servo Bracket 

 

D.4 Servo Side Bracket 

 
Figure 86:  Top View of the Side Servo Bracket 

 

 
Figure 87:  3D Perspective of the Side Servo Bracket 
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Appendix E Enclosure Schematics 

 

This appendix presents all of the schematic designs necessary to replicate the enclosure 

used on the USL testbed.  Make note that all measurements are in millimeters. 

 

E.1 Enclosure Faceplate 

 

Make note that in Figure 88 the schematic does not show the bottom plate of the 

enclosure.  This is because the bottom plate is mounted to the back of the faceplate.  This 

designed allows for more surface area near the edge of the faceplate which makes manufacturing 

somewhat simpler. 

 

 
Figure 88:  Enclosure’s Faceplate Schematic 

 

E.2 Enclosure Left Side 

 

 
Figure 89:  Enclosure’s Left Side Schematic 
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Appendix E (Continued) 
 

E.3 Enclosure Right Side 

 

 
 Figure 90:  Enclosure’s Right Side Schematic  
 
E.4 Enclosure Box 

 

 
Figure 91:  3D Representation of the Enclosure (without lid) 
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Appendix F Operating System Package Deletion List 

 

This appendix is dedicated to listing the packages removed during the installation of the 

OS.  This appendix specifically refers to the installation that will eventually be copied onto the 

USB and utilized on the testbed.  This appendix is broken down into two sections representing the 

two groups of packages that were selected during the installation.  Each section list the packages 

that were deselected for installation from that of the default selections. 

 

F.1 Base Linux System 

 

Packages deselected:  acpid, apmd, cpio, cryptsetup, cupps, eject, elvis ,gawk, gpm, 

jfsutils, kernel generic, kernel generic smp, kernel huge smp, mdadm, mt-st, mtx, ncompress, 

pcmciautils, quota, reiserfsprogs, rpm2tgz, splitvt, sysklogd, tree, unarj, which, xfsprogs, zoo. 

 

F.2 Networking 

 

Packages deselected:  biff+comsat, bitchx, bluez-firmware, bluez-hcidump, bluez-libs, 

bluez-utils, bridge-utils, cyrus-sasl, elm, epic4, fetchmail, getmail, imapd, iptables, irssi, links, 

lynx, mailx, mcabber, metamail, mutt, nettalk, netkit-bootparamd, netwrite, nn, popa3d, procmail, 

samba, sendmail, sendmail-cf, slrn, tin, trn, ytalk 
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Appendix G Pseudocode 

 

G.1 Inc.c 

 

G.1.1 getCurrentTime(…) 

 

/*Function:  Captures the current system time which is the number of seconds since  */  
/*                 midnight January 1st 1970      */ 
/* Inputs:  N/A         */ 
/* Outputs: 1) seconds         */ 
/*                2) microseconds         */ 
void getCurrentTime(…) 
{ 

//gettimeofday(…,NULL); 
 //set seconds output 
 //set microseconds output 
} 
     

G.1.2 timeDifference(…) 

 

/*Function: Returns the time difference between two supplied times   */ 
/*Inputs:  1) old time (seconds)       */ 
/*  2) old time (microseconds)       */ 
/*  3) new time (seconds)       */ 
/*  4) new time (microseconds)      */ 
/*Outputs: 1) difference (seconds.microseconds)     */ 
double timeDifference(…) 
{ 
 //calculate the difference between the old and new seconds (secDiff) 

//calculate the difference between the old and new microseconds (microDiff) 
    
//if microDiff < zero 

 { 
//return secDiff - microDiff/1000000 

 } 
 //else 

{ 
//return secDiff + microDiff/1000000 

 } 
} 
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Appendix G (Continued) 
 

G.2 Inc.h 

 

/*Structure: Shared memory structure for the laser range data    */ 
//struct laser_struct          
{ 
 //laser array 
}; 
 
/*Structure: Shared memory structure for the state of control    */ 
//struct state_struct 
{ 
 //state of the control (human or computer) 
 }; 
 
/*Structure: Shared memory structure for data collecting     */ 
//struct store_data 
{ 
 // fuzzy controllers output array 
 // fuzzy controllers input array (collective) 
 // fuzzy controllers input array (yaw) 
 // fuzzy controllers input array (roll) 
 // fuzzy controllers input array (pitch) 
 // position array (latitude, longitude, altitude) 
}; 
 
/*Structure: Shared memory structure for servo control     */ 
//struct servo_control 
{ 
 //left servo pulse width 
 //right servo pulse width 
 //forward servo pulse width 
 //tail servo pulse width 
 //gyro pulse width 
 //throttle pulse width 
}; 
 
/*Structure: Shared memory structure for pan/tilt control     */ 
//struct PnT 
{ 
 //panning servo pulse width 
 //tilt servo pulse width 
}; 
 
/*Structure: Shared memory structure for GPS data     */ 
//struct gps  
{ 
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 //latitude 
     //longitude 
     //latitude direction 
     //longitude direction 
 //type of gps lock 
 //number of satellites in lock 
 //altitude 
 //gps position incrementer 
}; 
/*Union: Union for semaphores        */ 
//union semun  
{ 
 //int val; 
 //struct semid_ds *buf; 
 //ushort *array; 
}; 
 
/*Structure: Shared memory structure for IMU data     */ 
//struct imu 
{ 
     //orientation array (roll, pitch, yaw) 
 //accelerations array 
 //angular rate array 
 //timestamp (seconds) 
 //timestamp (microseconds) 
}; 
 
/*Structure: Shared memory structure for data passed between vehicles   */ 
//struct vehicledata 
{ 
 //latitude 
 //longitude 
 //heading 
}; 
 
//function declaration for getCurrentTime(…); 
//function declaration for timeDifference(…); 
 

G.3 Robot_defs.h 

 

//define number of channels for SSC communication 
//define front servo’s neutral, maximum, and minimum pulse width values 
//define left servo’s neutral, maximum, and minimum pulse width values 
//define right servo’s neutral, maximum, and minimum pulse width values 
//define throttle’s neutral, maximum, and minimum pulse width values 
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//define tail servo’s neutral, maximum, and minimum pulse width values 
//define gyro’s neutral, maximum, and minimum pulse width values 
//define collective neutral, maximum, and minimum pulse width offsets 
//define pan servo’s neutral pulse width value 
//define tilt servo’s neutral pulse width value 
//function declaration for connectHeliServo(); 
//function declaration for disconnectRobotServo(…); 
//function declaration for heliDriveCommand(…); 
//function declaration for CalcCheckSum(…); 
 

G.4 Robot_motor.c 

 

//include "Robot_defs.h" 

 

G.4.1 connectHeliServo( ) 

 

/*Function:  Setup comms and connect to SSC device    */ 
/*Inputs:  N/A         */ 
/*Outputs:  1) file descriptor pointing to SSC device     */ 
int connectHeliServo() 
{ 

//open gps device with the O_RDWR | O_NOCTTY | O_NDELAY options 
         // if open fails  

{ 
  //print error 
  //return -1; 
 }    
 
 /*SETUP COMMUNICATION OPTIONS*/ 
 // no parity 

// one stopbit 
// No hardware flow control. 

 // 8N1 
// set min read characters to 0 
// VTIME takes over (i.e. = 0) 

 // make output raw (i.e. cfmakeraw()) 
 // set input/output baud rate 
  

// flush input buffer 
// set attributes 

 
 // return file descriptor 
} 
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Appendix G (Continued) 
 

G.4.2 disconnectRobotServo(…) 

 

/*Function:  Stop comms with the SSC      */ 
/*Inputs: 1) file descriptor pointing to the SSC device    */ 
/*Outputs:  N/A         */ 
void disconnectRobotServo(…) 
{ 
 //close file descriptor 
} 
 

G.4.3 calcCheckSum(…) 

 

/*Function:  Calculates a two byte checksum for the SSC data packet   */ 
/*Inputs: 1) data packet        */ 
/*Outputs:  1) checksum byte one       */ 
/*  2) checksum byte two       */ 
void calcCheckSum(…) 
{ 
 //Calculate a Fletcher checksum as defined in RFC 1145 
} 
 

G.4.4 heliDriveCommand(…) 

 

/*Function:  Creates and sends a packet to the SSC requesting servo movement */ 
/*Inputs: 1) file descriptor pointing to the SSC device    */ 
/*  2) left servo pulse width       */ 
/*  3) throttle pulse width       */ 
/*  4) tail servo pulse width       */ 
/*  5) gyro pulse width       */ 
/*  6) right servo pulse width      */ 
/*  7) pan servo pulse width      */ 
/*  8) tilt servo pulse width       */ 
/*Outputs:  N/A         */ 
void heliDriveCommand(…) 
{         

//put header bytes into data packet    
 //put message type byte into data packet 
 //put data byte count into data packet 
 
 //break individual inputs into two bytes each and add to data packet  
     
 //calculate the checksum for data packet (i.e. CalcCheckSum(…)) 
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 //add checksum bytes to data packet 
     
 //send data packet to SSC 
} 
 

G.5 Gps.c 

 

#include Inc.h 
 

G.5.1 connectRobotGPS( ) 

 

/*Function:  Setup comms and connect to GPS device    */ 
/*Inputs:  N/A         */ 
/*Outputs:  1) global file descriptor pointing to GPS device    */ 
int connectRobotGPS( ) 
{ 

//open gps device with the O_RDWR | O_NOCTTY options 
         // if open fails  

{ 
  //print error 
  //return -1; 
 }    
 
 /*SETUP COMMUNICATION OPTIONS*/ 
 // no parity 

// one stopbit 
// No hardware flow control. 

 // 8N1 
// set min read characters to 0 
// VTIME takes over (i.e. = 0) 

 // set input/output baud rate 
  

// flush input buffer 
// set attributes 

 
 //return(0); 
} 
 

G.5.2 getGPS( ) 

 

/*Function:  Receive and parse data packet from the GPS    */ 
/*Inputs:  N/A         */ 
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/*Outputs:  1) latitude        */ 
/*  2) longitude        */ 
/*  3) direction of latitude       */ 
/*  4) direction of longitude       */ 
/*  5) type of GPS lock       */ 
/*  6) number of satellites tracking      */ 
/*  7) altitude        */ 
int getGPS(double *lat, double *lon, char *dirLat, char *dirLon, int *lock, int *sats, float 
*altitude) 
{ 
 //while not done 
 { 
  //while end of line has not been reached 
  {  
   //read a single character 
   //if read is successful 
   { 
    //add character to input string 
   } 
   //else 
    //sleep for maximum transition time of one character 
  } 
 } 
  
 //if input string looks incorrect 
  //return(-1) 
 
 //if message type is GPGGA 
 { 
  //parse string for latitude, longitude, latitude direction, longitude direction, lock,  
                          //number of satellites, and altitude 
 } 
 
 //convert latitude to degrees.hours 
 //convert longitude to degrees.hours 
 //return 0; 
} 
 

G.5.3 signalHandler(…) 

 

/*Function:  Closes devices if a terminate signal is received    */ 
/*Inputs:  1) Signal that signals this function should be performed   */ 
/*Outputs:  N/A         */ 
static void signalHandler(int signal) 
{ 
 //close file descriptor for GPS device 
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//exit(0); 

}  
 

G.5.4 main( ) 

 

/*Function:  Main for the GPS process      */ 
/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
int main( ) 
{ 

//connect to the gps 
     //if (connectRobotGPS() < 0) 
  //exit(-1); 
 
     // install signal handler for manual break 
     //signal(SIGINT, signalHandler); 
 
 //create shared memory of appropriate size 
     //attach shared memory to this process 
 
     //create a single semaphore with no semaphore flags 
       
    //decrement semaphore  
     //initialize GPS shared memory to default values 

//increment semaphore; 
 
    //getGPS(…); 
 
     //while (1) 
     //{ 
  //getGPS(…); 
 
      //decrement semaphore 
  //update shared memory 

//increment semaphore; 
 
  //if type of lock changes output status to display 
   
  //sleep for 90% of the time between data packets 
     } 
     //exit(0); 
} 
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G.6 Laser.c 

 

#include Inc.h 

 

G.6.1 connectLaser( ) 

 

/*Function:  Setup comms and connect to Laser device    */ 
/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
int connectLaser( ) 
{ 

//open laser device (ttyACM?) with the O_RDWR | O_NOCTTY | O_NDELAY options 
         // if open fails  

{ 
  //print error 
  //return -1; 
 }    
 
 /*SETUP COMMUNICATION OPTIONS*/ 
 // no parity 

// one stopbit 
// No hardware flow control. 

 // 8N1 
// set min read characters to 0 
// VTIME takes over (i.e. = 0) 

 // c_lflag = ICANON 
 // set input/output baud rate 
  

// set attributes 
// flush input/output buffers 

 
 //return(0); 
} 
 

G.6.2 fillBuffer(…) 

 

/*Function:  Fills a string with data until an end of line character is received  */ 
/*Inputs:  1) file descriptor for device      */ 
/*Outputs:  1) string of input data       */ 
fillBuffer(…) 
{ 
 //while end of line has not been reached 
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 {  
  //read a single character 
  //if read is successful 
  { 
   //add character to input string 
  } 
  //if read fails 
   //sleep for maximum transition time of one character 
 } 
} 
 

G.6.3 getVersion( ) 

 

/*Function:  Attempts to gather version data for the laser device   */ 
/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
int getVersion( ) 
{ 
 //send version request command (VV) to laser 
        //if write to device fails 
             //return -1; 
  
 //read laser’s echo of data request 
 //fillBuffer(…) 
 
 //read laser response 

//fillBuffer(…) 
 
//if error packet was not received (i.e. “00P” msg) 

 { 
 //fillBuffer(…) 

  //output version information to display 
 } 
 //if error packet was received 
 { 
  //output error 
  //fflush(stdout); 
 } 
 //return 1; 
} 
 

 

 

 



www.manaraa.com

 

 

180

Appendix G (Continued) 
 

G.6.4 getSpecifications( ) 

 

/*Function:  Attempts to gather the specifications for the laser device   */ 
/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
getSpecifications( ) 
{ 
 //send specification request command (PP) to laser 
        //if write to device fails 
             //return -1; 
  
 //read laser’s echo of data request 
 //fillBuffer(…) 
 
 //read laser response 

//fillBuffer(…) 
 
//if error packet was not received (i.e. “00P” msg) 

 { 
 //fillBuffer(…) 

  //output specification information to display 
 } 
 //if error packet was received 
 { 
  //output error 
  //fflush(stdout); 
 } 
 //return 1; 
} 
 

G.6.5 getState( ) 

 

/*Function:  Attempts to gather information regarding the current state of the laser  */ 
/*  device         */ 
/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
getState( ) 
{ 
 //send state request command (II) to laser 
        //if write to device fails 
             //return -1; 
  
 //read laser’s echo of data request 
 //fillBuffer(…) 
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 //read laser response 

//fillBuffer(…) 
 
//if error packet was not received (i.e. “00P” msg) 

 { 
 //fillBuffer(…) 

  //output state information to display 
 } 
 //if error packet was received 
 { 
  //output error 
  //fflush(stdout); 
 } 
 //return 1; 
} 
 

G.6.6 setVersion( ) 

 

/*Function:  Sets the communication version of the laser to version 2.0  */ 
/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
 
int setVersion( ) 
{ 
 //send version set request command (SCIP2.0) to laser 
        //if write to device fails 
             //return -1; 
  
 //read laser’s echo of data request 
 //fillBuffer(…) 
 
 //read laser response 

//fillBuffer(…) 
 
//if first returned character is zero 

 { 
 //display “Version change successful” 

  //fflush(stdout); 
 } 
 //if first returned character is not zero 
 { 
  //output error 
  //fflush(stdout); 
 } 
 
 //flush I/O buffers 
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 return 1; 
} 
 

G.6.7 turnOnLaser( ) 

 

/*Function:  Commands the laser to the “On” state and sets the operation mode */ 
/*  measurement        */ 
/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
int turnOnLaser( ) 
{ 
 //send on request command (BM) to laser 
        //if write to device fails 
             //return -1; 
  
 //read laser’s echo of data request 
 //fillBuffer(…) 
 
 //read laser response 

//fillBuffer(…) 
 
//if the first two returned characters are zero 

 { 
 //display “Laser is ON” 

  //fflush(stdout); 
 } 

//else if the first returned character is zero and the second is two 
 { 

 //display “Laser was already ON” 
  //fflush(stdout); 
 } 
 //else 
 { 
  //display error message 
  //fflush(stdout); 
 } 
 
 //flush I/O buffers 
 //return 1; 
} 
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G.6.8 turnOffLaser( ) 

 

/*Function:  Commands the laser to the “Off” state     */ 
/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
int turnOffLaser( ) 
{ 
 //send turn off request command (QT) to laser 
        //if write to device fails 
             //return -1; 
  
 //read laser’s echo of data request 
 //fillBuffer(…) 
 
 //read laser response 

//fillBuffer(…) 
 
//if error packet was not received (i.e. “00P” msg) 

 { 
  //display “Laser is off” 
  //fflush(stdout); 
 } 
 //if error packet was received 
 { 
  //output error 
  //fflush(stdout); 
 } 
 
 //flush I/O buffers 
 //return 1; 
} 
G.6.9 resetLaser( ) 

 

/*Function:  Commands the laser to reset      */ 
/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
int resetLaser( ) 
{ 
 //flush I/O buffers 
 
 //send turn off request command (RS) to laser 
        //if write to device fails 
             //return -1; 
  
 //read laser’s echo of data request 
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 //fillBuffer(…) 
 //if echo does not equal request 
  //return(-1); 
 
 //read laser response 

//fillBuffer(…) 
 
//if error packet was not received (i.e. “00P” msg) 

 { 
  //display “Reset Successful” 
  //fflush(stdout); 
 } 
 //if error packet was received 
 { 
  //output error 
  //fflush(stdout); 
 } 
 
 //flush I/O buffers 
 //return 1; 
} 
 

G.6.10 startMS( ) 

 

/*Function:  Request laser send data continuously without requests   */ 
/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
int startMS( ) 
{ 
 
 //create MS request packet (i.e. MS0360041001000) 
 //send range data request command (MS…) to laser 
        //if write to device fails 
             //return -1; 
 //return 0; 
} 
 

G.6.11 getLaser(…) 

 

/*Function:  Parses data sent by the laser      */ 
/*Inputs:  N/A         */ 
/*Outputs:  1) array of laser range readings      */ 
int getLaser(…) 
{ 
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 //read echo of laser command being performed 

//fillBuffer(…) 
 //if echo does not equal request (MS) 
  return(-1); 
 
 //read status 

//fillBuffer(…) 
 //if laser is in a failure state (i.e. data packet is NOT “99b…” or “00P”  
 { 
  //if attempting to recover from error (i.e. data packet is “2…”) 
  { 
   //display "Laser: Possible Error Detected...checking\n"; 
   //return -2; 
  } 
  //if recovered from previous error state (i.e. data packet is “98…”  

{ 
   // display "Laser Diagnosis Complete\n"; 
   //return -3; 
  } 
 
  //display error message 
  //fflush(stdout); 
  //return -1; 
 } 
 
 //read timestamp and sum 

//fillBuffer(…) 
 
 //while (1) 
 { 
 
  //read a single line of range data 

//fillBuffer(…) 
  //if first character in range data packet is an end of line character 
   //return(1); 
  //else 
          // Parse data packet for laser range readings and place in output array 
 } 
} 
 

G.6.12 signalHandler(…) 

 

/*Function: Closes devices if a terminate signal is received    */ 
/*Inputs:  1) Signal that signals this function should be performed   */ 
/*Outputs:  N/A         */ 
static void signalHandler(…) 
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{ 

//reset_laser(); 
 //close file descriptor for GPS device 

//exit(0); 
}  
 

G.6.13 main( ) 

 

/*Function: Main function for the laser process      */ 
/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
int main( ) 
{ 
 //initialize laser array to zeros 
 
  //if (connectLaser() < 0) 
  //return (-1); 
 
 //create shared memory 
     //attach shared memory to this process 
      

//create a single semaphore with no semaphore flags 
 
     // install signal handler for manual break 
 
     //decrement semaphore  
 //fill shared memory with laser array values 

//increment semaphore; 
 
     //resetLaser(); 
     //sleep(2); 
     //turnOnLaser(); 
    
     //startMS(); 
 
     //while (1) 
     { 
      //getLaser(…); 
 
  //if return value > 0 
  { 
              //decrement semaphore  

//fill shared memory with laser array values 
//increment semaphore; 

  //else if return value is -1 
  { 
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   //display "Attempting to reset laser\n"; 
   //if (reset_laser() == -1) 
   { 
    //sleep(1); 
    //if (reset_laser() == -1) 
    { 

//get_version(); 
     //get_specifications(); 
     //get_state(); 
  
                //decrement semaphore  

//fill shared memory with zero values 
//increment semaphore; 

 
     //display "Laser appears to be dead...reattempt in 5  
                                                                 //seconds\n"; 
 
     //turn_off_laser(); 
 
     //sleep(3); 
    } 
   } 
   //sleep(2); 
   //turn_on_laser(); 
   //sleep(1); 
  } 
  //sleep for 90% of time between data outputs 
 } 

exit(0); 
} 
 

G.7 Imu.c 

 

//include m3dmgErrors.h 
//include m3dmgSerial.h 
//include m3dmgAdapter.h 
//include m3dmgUtils.h 
 
//include src/Inc.h 
//include src/Inc.c 
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G.7.1 signalHandler(…) 

 

/*Function: Closes devices if a terminate signal is received    */ 
/*Inputs:  1) Signal to be used to cause this function to run    */ 
/*Outputs:  N/A         */ 
static void signalHandler(int signal) 
{ 

//m3dmg_closeDevice(…); 
   //exit(0); 
}  
 

G.7.2 main(…) 

 
/*Function:  Main function for the IMU process     */ 
/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
int main() 
{ 
 

/* open device */ 
//portNum = m3dmg_openPort(…); 

     //if open fails 
{ 

          //display error 
          //return -1; 
     } 
 
 /*map device*/ 
     //m3dmg_mapDevice(…); 
     //if mapping fails 

{ 
          //display error 
          //return -1; 
     } 
 
     /* install signal handler */ 
     //signal(…); 
 
 //create shared memory 
     //attach shared memory to this process 
 
     //create a single semaphore with no flags 
 
     //getCurrentTime(…);     
     //decrement semaphore 
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     //initialize imu data to default values 

//increment semaphore; 
     

//while (1) 
     { 
  //m3dmgGetEverything(…); 
  //if error 
   //display error message 
 
      //getCurrentTime(…); 
 
  //decrement semaphore 
  //update shared memory 

//increment semaphore; 
     } 
     //exit(0); 
} 
 

G.8 m3dmgAdapter.h 

 

/*add a function declaration to this manufacture supplied source code file*/ 

//function declaration for m3dmgGetEverything(…) 

 

G.9 m3dmgAdapter.c 

 

G.9.1 m3dmgGetEverything(…) 

 

/*Function:  Request Euler angles, angular rates, and accelerations   */ 
/*Inputs:  1) IMU file descriptor       */ 
/*  2) Euler angles array       */ 
/*  3) Accelerations array       */ 
/*  4) Angular rates array       */ 
/*Outputs:  1) Error Code        */ 
int m3dmgGetEverything(…) 
{ 
 
 /*request MSG 49 from IMU*/ 
     //m3dmg_sendCommand(…); 
     //if error code returned 
          //return status; 
    //else  

{ 
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 //fill Euler angles array with request response// 
 //fill Euler angles array with request response// 
 //fill Euler angles array with request response// 

          //return M3D_OK; 
     } 
} 
 

G.10 Servo.c 

 

//include " Robot_defs.h" 
//include "Inc.h" 
 

G.10.1 sigintHandler(…) 

 

/*Function:  Closes devices if a terminate signal is received    */ 
/*Inputs:  1) Signal to be used to cause this function to run    */ 
/*Outputs:  N/A         */ 
void sigintHandler(…) 
{  
 //close all open file descriptors 
 //exit(0); 
}  
 

G.10.2 createSharedMem( ) 

 

/* Function:  Connects to shared memory create for the control, PnT, and stat_struct */ 
/*  structures        */ 
/* Inputs:  N/A         */ 
/* Outputs:  N/A         */ 
int createSharedMem( ) 
{  
  

//create control structure shared memory 
//create PnT structure shared memory 
//create stat_struct shared memory 

 
     //attach shared memory to this process 
 

//create control structure semaphore 
//create PnT structure semaphore 
//create stat_struct semaphore 
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 //return 0; 
} 
 
 
G.10.3 getControllServos(…) 

 

/* Function:  Retrieves the most up-to-date position request for the helicopter’s servos */ 
/* Inputs:  N/A         */ 
/* Outputs:  1) left servo pulse width       */ 
/*  2) right servo pulse width      */ 
/*  3) front servo pulse width      */ 
/*  4) tail servo pulse width       */ 
/*  5) gyro pulse width       */ 
/*  6) throttle pulse width       */ 
void getControllServos() 
{ 
 //decrement control semaphore 
 //fill output data with shared memory data 
 //increment control semaphore 
} 
 

G.10.4 getPanTiltServos(…) 

 

/* Function:  Retrieves the most up-to-date position request for the pan/tilt servos */ 
/* Inputs:  N/A         */ 
/* Outputs:  1) panning servo pulse width      */ 
/*  2) tilting servo pulse width      */ 
void getPanTiltServos(…) 
{ 
 //decrement PnT semaphore 
 //fill output data with shared memory data 
 //increment PnT semaphore 
} 
 

G.10.5 putStatus(…) 

 

/* Function:  Retrieves the most up-to-date position request for the pan/tilt servos */ 
/* Inputs:  1) indicator of the safety switch position (human/computer control) */ 
/* Outputs:  N/A         */ 
void putStatus(…) 
{ 
 //decrement stat_struct semaphore 
 //update shared memory with input data 
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//increment stat_struct semaphore; 

} 
 

G.10.6 statusMessage(…) 

 

/* Function:  Partially parses status messages received from the SSC   */ 
/* Inputs:  1) data string received from SSC     */ 
/* Outputs:  N/A         */ 
void statusMessage(…) 
{  
 
 /* Use bits 1&2 to determine state*/ 
 //switch (…) 
     { 
          //case 0: 
               //signal for switch position is not available 
   //break; 
  //case 1: 
   //switch is in position one 
   //break; 
  //case 2: 
   //switch is in position 1.5 
   //break; 
  //case 3: 
   //switch is in position 2 
   //break; 
 } 
} 
 

G.10.7 messageID(…) 

 

/* Function:  Determines type of message received from the SSC   */ 
/* Inputs:  1) message ID        */ 
/*  2) data string        */ 
/* Outputs:  N/A         */ 
void messageID(…) 
{  
 /*determine type of message*/ 
 //switch (…) 
 { 
  //case 10: 
           //statusMessage(…); 
           //break; 
  //default: 
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   //display “Message type not supported” 
   //break; 
 } 
} 
 
 
G.10.8 main( ) 

 
/* Function:  Main function for the servo process     */ 
/* Inputs:  N/A         */ 
/* Outputs:  N/A         */ 
int main() 
{ 
 
 /*create the shared memory*/ 
 //createSharedMem() 
 //if shared memory fails 
 { 
  //display error message 

//return -1; 
 } 
   
 /*setup connection to SSC*/ 
 //connectHeliServo(); 
   
 /*install signal handler*/ 
 //signal(…); 
 
 //decrement control semaphore 
 //fill shared memory with default data 
 //increment control semaphore; 
  
 //decrement PnT semaphore 
 //fill shared memory with default data 
 //increment PnT semaphore; 
 
 //decrement stat_struct semaphore 
 //fill shared memory with default data 
 //increment stat_struct semaphore; 
  
 //getCurrentTime(…);  
 
         //while(1) 
 { 
  //do 
  { 
   //usleep(100); 
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   //getCurrentTime(…); 
   //timeDifference(…); 
  }//while time passed since last update is not approximately 100Hz 
 
  //getControllServos(…); 
  //getPanTiltServos(…); 
   
  //heliDriveCommand(…);    
  //getCurrentTime(…); 
 
  //check for input from SSC 
  //if input is available 
  { 
   //read input data 
   //parse out message ID 
   //parse out data string 
   //messageID(…); 
  }   
 } 
  
 //return 0; 
} 
 

G.11 Collect.c 

 

//include "src/Inc.h" 

 

G.11.1 sigintHandler(…) 

 

/*Function:  Closes devices if a terminate signal is received    */ 
/*Inputs:  1) Signal to be used to cause this function to run    */ 
/*Outputs:  N/A         */ 
void sigintHandler(int sig_num) 
{  
 //close all open file descriptors 
 //exit(0); 
}  
 

G.11.2 createSharedMem( ) 

 

/*Function:  Creates shared memory locations for the store_data and state_struct */ 
/*  structures        */ 
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/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
int createSharedMem ( ) 
{  
 // create shared memory for store_data structure 

// create shared memory for state_struct structure 
 
     //attach shared memory to this process 
 
 //create a single semaphore with no flags for store_data 
 //create a single semaphore with no flags for state_struct 
  
 //return 0; 
} 
 

G.11.3 getData(…) 

 

/*Function:  Retrieves information stored in the store_data shared memory structure */ 
/*Inputs:  N/A         */ 
/*Outputs:  1) Array of fuzzy controller output     */ 
/*  2) Array of fuzzy controller input (collective controller)   */ 
/*  3) Array of fuzzy controller input (yaw controller)   */ 
/*  4) Array of fuzzy controller input (roll controller)   */ 
/*  5) Array of fuzzy controller input (pitch controller)   */ 
/*  6) Array of position data (latitude, longitude, altitude)   */ 
void getData(…) 
{ 
 //decrement semaphore 
 //place data in shared memory into appropriate array 
 //increment semaphore; 
} 
 

G.11.4 getStat(…) 

 

/*Function:  Retrieves information stored in the stat_struct shared memory structure  */ 
/*Inputs:  N/A          */ 
/*Outputs:  1) variable describing position of safety switch (computer/human control) */ 
void getStat(…) 
{ 
 //decrement semaphore 
 //place data in shared memory into output variable 
 //increment semaphore; 
} 
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G.11.5 main( ) 

 

/*Function:  Main function for the collect data process    */ 
/*Inputs:  N/A         */ 
/*Outputs:  N/A         */ 
int main() 
{   
 /*install signal handler for manual break*/ 
 //signal(SIGINT, sigintHandler); 
  
 //createSharedMem() 
 //if shared memory fails 

{ 
  //display error message 
  //return -1; 
 } 
   
 //open file to store data 
 
 //while(1) 
 { 
  //getData(…); 
  //getStat(…); 
   
  //output collected data to file 
   
  /*force a maximum output rate*/ 
  //usleep(…); 
 } 
} 
 

G.12 Pan_tilt.c 

 

//include "Robot_defs.h" 

 

G.12.1 sigintHandler(…) 

 

/* Function:  Closes devices if a terminate signal is received    */ 
/* Inputs:  1) Signal to be used to cause this function to run    */ 
/* Outputs:  N/A         */ 
void sigintHandler(int sig_num) 
{  
 //close all open file descriptors 
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 //exit(0); 
} 
 

G.12.2 main( ) 

 

/* Function:  Main function for the pan/tilt process     */ 
/* Inputs:  N/A         */ 
/* Outputs:  N/A         */ 
int main( ) 
{  
  

//connect to shared memory for PnT structure 
//connect to semaphore for PnT structure 
 

 /*install signal handler*/ 
 //signal(…); 
 
 //while(1) 
         { 
             //calculate pan position 
  //calculate tilt position 
 
  //decrement semaphore 
  //update shared memory 
  //increment semaphore 
 
  /*sleep for desired update rate to pan/tilt*/ 
      //usleep(…); 
 } 
} 
 

G.13 Data_test.c 

 

//include Inc.h 

 

G.13.1 createSharedMem( ) 

 

/* Function:  connects to shared memory for the gps, imu, and laser structures  */ 
/* Inputs:  N/A         */ 
/* Outputs:  N/A         */ 
int createSharedMem( ) 
{ 
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 //connect to shared memory for gps 
 //connect to shared memory for imu 
 //connect to shared memory for laser 
 //attach shared memory to this process 
 
 //connect to semaphore for gps 
 //connect to semaphore for imu 
 //connect to semaphore for laser 
 
 //return (0); 
} 
 

G.13.2 getLaser(…) 

 

/* Function:  Retrieves laser data from shared memory    */ 
/* Inputs:  N/A         */ 
/* Outputs:  1) Array of laser range data      */ 
void getLaser(…) 
{ 

//decrement laser semaphore 
//fill output array with data from shared memory 

 //increment laser semaphore; 
} 
 

G.13.3 getGPS(…) 

 

/* Function:  Retrieves gps data from shared memory     */ 
/* Inputs:  N/A         */ 
/* Outputs:  1) Array of position data (latitude, longitude, latitude direction, longitude */  
/*      direction, type of lock, number of satellites being tracked, and altitude) */ 
void getGPS(…) 
{ 

//decrement gps semaphore 
//fill output array with data from shared memory 

 //increment gps semaphore; 
} 
 

G.13.4 getIMU(…) 

 
/* Function:  Retrieves imu data from shared memory     */ 
/* Inputs:  N/A         */ 
/* Outputs:  1) Array of Euler angles       */  
/*  2) Array of accelerations      */ 
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/*  3) Array of angular rate       */ 
void getIMU(…) 
{ 

//decrement imu semaphore 
//fill output arrays with data from shared memory 

 //increment imu semaphore; 
} 
  

G.13.5 main( ) 

 

/* Function:  Main function for the data_test process     */ 
/* Inputs:  N/A         */ 
/* Outputs:  N/A         */ 
int main( ) 
{  
 
 //createSharedMem() 
 //if shared memory fails 
 { 
  //display error message 
  //return -1; 
 } 
 
 //while(1) 
 { 
  //getGPS(…); 
  //getIMU(…); 
  //getLaser(…); 
 
  //average laser readings requested 
 
  //display laser average 

//display position information 
//display imu information 
 
//sleep for desired output rate 

          //usleep(…); 
 } 
} 
 

G.14 Navigate.c 

 

//include " Robot_defs.h" 
//include " Inc.h" 
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//include " fis.c" 
//include " navigate.h" 
 

G.14.1 sigintHandler(…) 

 

/* Function:  Attempts to shutdown devices properly if process termination is  */ 
/*  requested        */ 
/* Inputs:  1) signal that tells this function to operate    */ 
/* Outputs:  N/A         */ 
void sigintHandler(…) 
{ 
 /*free the four fis nodes created for the four fuzzy controllers*/ 
 //fisFreeFisNode(..); 
 //fisFreeFisNode(..); 
 //fisFreeFisNode(..); 
 //fisFreeFisNode(..); 
 
 /*free the four fis matrices created for the four fuzzy controllers*/ 
 
 //fisFreeMatrix(…); 
 //fisFreeMatrix(…); 
 //fisFreeMatrix(…); 
 //fisFreeMatrix(…); 
 
 //close all open sockets 
 //exit(0); 
}  
 

G.14.2 createSharedMem( ) 

 

/* Function:  Connects to shared memory locations for gps, imu, control, store_data,  */  
/*  stat_struct, and laser structures      */ 
/* Inputs:  N/A         */ 
/* Outputs:  N/A         */ 
int createSharedMem( ) 
{ 
 //connect to gps shared memory 
 //connect to imu shared memory 
 //connect to control shared memory 
 //connect to store_data shared memory 
 //connect to stat_struct shared memory 
 //connect to laser shared memory 
 
 //attach all shared memory to this process 
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 //connect to gps semaphore 
 //connect to imu semaphore 
 //connect to control semaphore 
 //connect to store_data semaphore 
 //connect to stat_struct semaphore 
 //connect to laser semaphore 
 
     //return (0); 
} 
 

G.14.3 getGPS(…) 

 

/* Function:  Retrieves gps data from shared memory     */ 
/* Inputs:  N/A         */ 
/* Outputs:  1) Array of position data (latitude, longitude, latitude direction, longitude */  
/*      direction, type of lock, number of satellites being tracked, and altitude) */ 
/*  2) variable describing if this is new gps data    */ 
void getGPS(…) 
{ 

//decrement gps semaphore 
//fill output array with data from shared memory 

 //increment gps semaphore; 
 
 //if count variable in shared memory has changed since last function call 
  //set new gps variable to true 
 //else 
  //set new gps variable to false 
} 
 

G.14.4 getIMU(…) 

 

/* Function:  Retrieves imu data from shared memory     */ 
/* Inputs:  N/A         */ 
/* Outputs:  1) Array of Euler angles       */  
/*  2) Array of accelerations      */ 
/*  3) Array of angular rate       */ 
void getIMU(…) 
{ 

//decrement imu semaphore 
//fill output arrays with data from shared memory 

 //increment imu semaphore; 
} 
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G.14.5 getStat(…) 

 

/* Function:  Retrieves position of the safety switch (human/computer control)  */ 
/* Inputs:  N/A         */ 
/* Outputs:  1) variable describing the location of the safety switch   */ 
void getStat(int *stat) 
{ 
 //decrement semaphore 
 //fill output variable with data from shared memory 
 //increment semaphore 
} 
 

G.14.6 getLaser(…) 

 

/* Function:  Retrieves laser data from shared memory    */ 
/* Inputs:  N/A         */ 
/* Outputs:  1) Array of laser range data      */ 
void getLaser(…) 
{ 

//decrement laser semaphore 
//fill output array with data from shared memory 

 //increment laser semaphore; 
} 
 

G.14.7 putControllServos(…) 

 

/* Function:  Updates control shared memory with new servo pulse width values */ 
/* Inputs:  1) left servo’s pulse width       */ 
/*  2) right servo’s pulse width       */ 
/*  3) front servo’s pulse width       */ 
/*  4) tail servo’s pulse width       */ 
/*  5) gyro’s pulse width        */ 
/*  6) throttle’s pulse width       */ 
/* Outputs:  N/A         */ 
void putControllServos(…) 
{ 
 //decrement control semaphore 
 //update control shared memory with new pulse width values 
 //increment control semaphore; 
} 
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G.14.8 storeData(…) 

 

/* Function:  Updates store_data shared memory with new data   */ 
/* Inputs:  1) Array of fuzzy controller outputs     */ 
/*  2) Array of fuzzy controller inputs (collective controller)   */ 
/*  3) Array of fuzzy controller inputs (yaw controller)   */ 
/*  4) Array of fuzzy controller inputs (roll controller)   */ 
/*  5) Array of fuzzy controller inputs (pitch controller)   */ 
/*  6) Array of position data (latitude, longitude, altitude)   */ 
/* Outputs:  N/A         */ 
void storeData(…) 
{ 

//decrement store_data semaphore 
 //update store_data shared memory with new values 
 //increment store_data semaphore; 
} 
 

G.14.9 setWorldRotationMatrices(…) 

 

/* Function:  Sets up three matrices to rotate data from the local coordinate frame to  */ 
*/  the world coordinate frame      */ 
/* Inputs:  1) Array of angles which will be rotated by    */ 
/* Outputs:  1) 2D Array for rotation about X axis     */ 
/*  2) 2D Array for rotation about Z axis     */ 
/*  3) 2D Array for rotation about Y axis     */ 
void setWorldRotationMatrices(…) 
{ 
 /*setup rotation matrix for X axis*/ 
 /*setup rotation matrix for Z axis*/ 
 /*setup rotation matrix for Y axis*/ 
} 
 

G.14.10  setLocalRotationMatrices(…) 

 

/* Function:  Sets up three matrices to rotate data from the world coordinate frame to */ 
*/  the local coordinate frame      */ 
/* Inputs:  1) Array of angles which will be rotated by    */ 
/* Outputs:  1) 2D Array for rotation about X axis     */ 
/*  2) 2D Array for rotation about Z axis     */ 
/*  3) 2D Array for rotation about Y axis     */ 
void setLocalRotationMatrices(…) 
{ 
 /*setup rotation matrix for X axis*/ 
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 /*setup rotation matrix for Z axis*/ 
 /*setup rotation matrix for Y axis*/ 
} 
 

G.14.11  multMatrices(…) 

 

/* Function:  Multiplies a 3x3 matrix with a 3x1 matrix    */ 
/* Inputs:  1) 2D Array used for 3x3 matrix      */ 
/*  2) Array used for 3x1 matrix      */ 
/* Outputs:  1) Solution array for multiplying inputs 1 and 2    */ 
void multMatrices(…) 
{ 
 //multiply inputs one and two together 
 //set output array to solution 
} 
 

G.14.12  translatePosition(…) 

 

/* Function:  Translates the latitude and longitude position of the GPS antenna to the  */ 
/*  center (main shaft) of the helicopter.  This is done as the GPS antenna is  */ 
/*  mounted on the tail boom of the helicopter.  Translation vaules are stored */ 
/*  external to this function and after being initialized are only modified by */ 
/*  this function.        */ 
/* Inputs:  1) Latitude position provided by the GPS process   */ 
/*  2) Longitude position provided by the GPS process   */ 
/*  3) Array of Euler angles provided by the IMU process   */ 
/*  4) New GPS variable (is the position data being processed for the first */ 
/*      time         */ 
/* Outputs:  1) N/A         */ 
void translatePosition(…) 
{ 
 /*rotate the position offset of GPS antenna from the local frame to the world frame*/ 

/*offset should only have a value on the Y axis…i.e. [2.4, 0, 0] for a 2.4 ft offset */  
 //setWorldRotationMatrices(...); 
 //multMatrices(…); 
 
 //negate the lateral offset 
 
         //divide lateral offset by the lateral resolution and round to nearest int value 

//divide longitudinal offset by the longitudinal resolution and round to nearest int value 
 
 //divide both the lateral and longitudinal offset by one million 
  
 //if this is the intinal run of this function 
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 { 
  //initialize a FIFO of lateral and longitudinal GPS offsets differences to zero 
  //FIFO size should be equal to the rate of the GPS 
 
          //set the old lateral offset = lateral offset 

//set the old longitudinal offset = longitudinal offset 
 
  //set global lateral change = lateral offset 
  //set global longitudinal change = longitudinal offset 
 
  //set old latitude =  current latitude 
  //set old longitude = current longitude 
 
  //set current latitude = current latitude – global latitude change 
  //set current longitude = current longitude – global longitude change 
 
  //return; 
 } 
 
 //if we are not using new GPS data 
 { 
  //set current latitude = current latitude – global latitude change 
  //set current longitude = current longitude – global longitude change 
  //return; 
 } 
 
 //pop lateral offset difference from FIFO and add to global lateral change 
 //pop longitudinal offset difference from FIFO and add to global longitudinal change 
 
         //set current latidude offset difference = old lateral offset – lateral offset 
         //set current lontitudinal offset difference = old longitude offset – longitude offset 
 
 //push current lateral offset difference onto FIFO 
 //push current longitudinal offset difference onto FIFO 
  
 //set latitude point difference = current latitude – old latitude 

//set longitude point difference = current longitude – old longitude 
 
         //if current latitude > old latitude 
 { 
                //for each element in the latitude FIFO 
                           { 
                  //if (FIFO value > 0) 
   { 
                           //if (FIFO value == latitude point difference) 
    { 
                            //global latitude change+= FIFO value; 
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                            //FIFO value = 0 
                            //break out of loop 
    } 
                           //else if (FIFO value < latitude point difference) 
                           { 
     //latitude point difference-=FIFO value 
     //global latitude change += FIFO value 
     //FIFO value = 0 
    } 
                           //else 
                           { 
     //global latitude change+= latitude point difference 

//FIFO value = FIFO value-latitude difference 
                            //break out of loop 
    } 
   } 
  } 
 } 
         //else if current latitude < old latitude 
 { 
                //for each element in the latitude FIFO 
                           { 
                  //if (FIFO value < 0) 
   { 
                           //if (FIFO value == latitude point difference) 
    { 
                            //global latitude change+= FIFO value; 
                            //FIFO value = 0 
                            //break out of loop 
    } 
                           //else if (FIFO value > latitude point difference) 
                           { 
     //latitude point difference-=FIFO value 
     //global latitude change += FIFO value 
     //FIFO value = 0 
    } 
                           //else 
                           { 
     //global latitude change+= latitude point difference 

//FIFO value = FIFO value-latitude difference 
                            //break out of loop 
    } 
   } 
  } 
 } 
 
         //if current longitude < old longitude 
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 { 
                //for each element in the longitude FIFO 
                           { 
                  //if (FIFO value < 0) 
   { 
                           //if (FIFO value == longitude point difference) 
    { 
                            //global longitude change+= FIFO value; 
                            //FIFO value = 0 
                            //break out of loop 
    } 
                           //else if (FIFO value > longitude point difference) 
                           { 
     //longitude point difference-=FIFO value 
     //global longitude change += FIFO value 
     //FIFO value = 0 
    } 
                           //else 
                           { 
     //global longitude change+= longitude point difference 

//FIFO value = FIFO value-longitude difference 
                            //break out of loop 
    } 
   } 
  } 
 } 
         //else if current longitude > old longitude 
 { 
                //for each element in the longitude FIFO 
                           { 
                  //if (FIFO value > 0) 
   { 
                           //if (FIFO value == longitude point difference) 
    { 
                            //global longitude change+= FIFO value; 
                            //FIFO value = 0 
                            //break out of loop 
    } 
                           //else if (FIFO value < longitude point difference) 
                           { 
     //longitude point difference-=FIFO value 
     //global longitude change += FIFO value 
     //FIFO value = 0 
    } 
                           //else 
                           { 
     //global longitude change+= longitude point difference 
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//FIFO value = FIFO value-longitude difference 
                            //break out of loop 
    } 
   } 
  } 
 } 
 
         //set the old lateral offset = the lateral offset 

//set the old longitudinal offset = the longitudinal offset 
 
 //set old latitude =  current latitude 
 //set old longitude = current longitude 
 
 //set current latitude = current latitude – global latitude change 
 //set current longitude = current longitude – global longitude change 
} 
 

G.14.13  translateVelocity(…) 

 

/* Function:  Modifies the GPS latitude and longitude to account for movments that */ 
/*  may have been caused by heading changes.  The changes  are not stored */ 
/*  and are recalculated every time.      */ 
/* Inputs:  1) Latitude position provided by the GPS process   */ 
/*  2) Longitude position provided by the GPS process   */ 
/*  3) Array of Euler angles provided by the IMU process   */ 
/*  4) New GPS variable (is the position data being processed for the first */ 
/*      time         */ 
/* Outputs:  1) N/A          */ 
void translateVelocity(…) 
{ 
 /*rotate the position offset of GPS antenna from the local frame to the world frame*/ 

/*offset should only have a value on the Y axis…i.e. [2.4, 0, 0] for a 2.4 ft offset */  
 //setWorldRotationMatrices(...); 
 //multMatrices(…); 
 //negate the lateral offset 
         //divide lateral offset by the lateral resolution and round to nearest int value 

//divide longitudinal offset by the longitudinal resolution and round to nearest int value 
 

 //divide both the lateral and longitudinal offset by one million 
 
 //if this is the intinal run of this function 
 { 
  //initialize a FIFO of lateral and longitudinal GPS offsets differences to zero 
  //FIFO size should be equal to the rate of the GPS 
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          //set the old lateral offset = the lateral offset 

//set the old longitudinal offset = the longitudinal offset 
 
  //set old latitude =  current latitude 
  //set old longitude = current longitude 
 
  //return; 
 } 
 
 //if we are not using new GPS data 
 { 
  //return; 
 } 
 
 //pop lateral offset difference from FIFO 
 //pop longitudinal offset difference from FIFO 
 
         //set current latidude offset difference = old lateral offset – lateral offset 
         //set current lontitudinal offset difference = old longitude offset – longitude offset 
 
 //push current lateral offset difference onto FIFO 
 //push current longitudinal offset difference onto FIFO 
  
 //set latitude point difference = current latitude – old latitude 

//set longitude point difference = current longitude – old longitude 
 
         //if current latitude > old latitude 
 { 
  //set latitude change to zero 
                //for each element in the latitude FIFO 
                           { 
                  //if (FIFO value > 0) 
   { 
                           //if (FIFO value == latitude point difference) 
    { 
                            //latitude change+= FIFO value; 
                            //FIFO value = 0 
                            //break out of loop 
    } 
                           //else if (FIFO value < latitude point difference) 
                           { 
     //latitude point difference-=FIFO value 
     //latitude change += FIFO value 
     //FIFO value = 0 
    } 
                           //else 
                           { 
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     //latitude change+= latitude point difference 

//FIFO value = FIFO value-latitude difference 
                            //break out of loop 
    } 
   } 
  } 
 } 
         //else if current latitude < old latitude 
 { 
  //set latitude change to zero 
                //for each element in the latitude FIFO 
                           { 
                  //if (FIFO value < 0) 
   { 
                           //if (FIFO value == latitude point difference) 
    { 
                            //latitude change+= FIFO value; 
                            //FIFO value = 0 
                            //break out of loop 
    } 
                           //else if (FIFO value > latitude point difference) 
                           { 
     //latitude point difference-=FIFO value 
     //latitude change += FIFO value 
     //FIFO value = 0 
    } 
                           //else 
                           { 
     //latitude change+= latitude point difference 

//FIFO value = FIFO value-latitude difference 
                            //break out of loop 
    } 
   } 
  } 
 } 
 
         //if current longitude < old longitude 
 { 
  //set longitude change to zero 
                //for each element in the longitude FIFO 
                           { 
                  //if (FIFO value < 0) 
   { 
                           //if (FIFO value == longitude point difference) 
    { 
                            //longitude change+= FIFO value; 
                            //FIFO value = 0 
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                            //break out of loop 
    } 
                           //else if (FIFO value > longitude point difference) 
                           { 
     //longitude point difference-=FIFO value 
     //longitude change += FIFO value 
     //FIFO value = 0 
    } 
                           //else 
                           { 
     //longitude change+= longitude point difference 

//FIFO value = FIFO value-longitude difference 
                            //break out of loop 
    } 
   } 
  } 
 } 
         //else if current longitude > old longitude 
 { 
  //set longitude change to zero 
                //for each element in the longitude FIFO 
                           { 
                  //if (FIFO value > 0) 
   { 
                           //if (FIFO value == longitude point difference) 
    { 
                            //longitude change+= FIFO value; 
                            //FIFO value = 0 
                            //break out of loop 
    } 
                           //else if (FIFO value < longitude point difference) 
                           { 
     //longitude point difference-=FIFO value 
     //longitude change += FIFO value 
     //FIFO value = 0 
    } 
                           //else 
                           { 
     //longitude change+= longitude point difference 

//FIFO value = FIFO value-longitude difference 
                            //break out of loop 
    } 
   } 
  } 
 } 
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         //set the old lateral offset = the lateral offset 

//set the old longitudinal offset = the longitudinal offset 
 
 //set old latitude =  current latitude 
 //set old longitude = current longitude 
 
 //set current latitude = current latitude – latitude change 
 //set current longitude = current longitude – longitude change 
} 
 

G.14.14  gpsRollPitchError(…) 

 

/* Function:  Calculates the lateral and longitudinal offset from a desired path in the */  
/*  local coordinate frame.       */ 
/* Inputs:  1) current latitude (value not reference)     */ 
/*  2) current longitude (value not reference)    */ 
/*  3) current goal’s latitude      */ 
/*  4) current goal’s longitude      */ 
/*  5) previous goal’s latitude      */ 
/*  6) previous goal’s longitude      */ 
/*  7) Array of Euler angles       */ 
/*  8) current altitude       */ 
/* Outputs:  1) lateral offset        */ 
/*  2) longitudinal offset       */ 
void gpsRollPitchError(…) 
{ 
 
 //translatePosition(…) 
 
 //Use the world model calculation to determine the distance, in feet, between the 

  current lat, lon and the previous goal’s lat, lon// 
 
 //Use the world model calculation to determine the distance, in feet, between the 

  current lat, lon and the current goal’s lat, lon// 
 

//if the straight line path between the current and previous goal intersects with a   
  predetermined circle around the current lat,lon// 
{ 
 //calculate the intersection points of the path with the circle 
 //determine which intersection point is closer to goal 
 //calculate distance vector to intersection point 
 //rotate distance vector to local coordinate frame 
 //set components of rotated distance vector to outputs 
} 
else 
{ 
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 //calculate distance vector from current lat, lon to current goal’s lat, lon 
 //rotate distance vector to local coordinate frame 
 //set components of rotated distance vector to outputs 
} 

} 
 

G.14.15  calcYawError(…) 

 

/* Function:  Calculates the heading offset      */ 
/* Inputs:  1) current heading       */ 
/*  2) desired heading       */ 
/* Outputs:  1) heading offset       */ 
float calcYawError(…) 
{ 
 /*calculate offset*/ 
 //subtract desired heading from current heading 
 
 //if offset is > 180 
  //subtract 360 from offset 
 //else if offset is < -180 

//add 360 to offset 
 

 //set offset to output 
} 
 

G.14.16  gpsVelocity(…) 

 

/* Function:  Attempts to use the last one seconds worth of GPS data to increase the */ 
/*  accuracy of the velocity calculated only using two consecutive GPS  */  
/*  readings        */ 
/* Inputs:  1) Array representing the current velocity vector    */ 
/* Outputs:  1) Updated velocity vector      */ 
void gpsVelocity(...) 
{ 
 
 //if this is the first run of this function 
 { 

//initialize old gps velocities to zero 
 } 
 
 
 /*Attempt to update the lateral component of the velocity vector.*/ 
 /*Use old velocity calculations to reduce the error due to resolution until*/ 
 /*all stored data has been used or the calculation violates the threshold of error*/  
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 /*Start with the most recent data and work backwards*/            
        //for up to one seconds worth of velocity inputs and while range is not broken 

{ 
 //calculate the possible lateral error due to GPS resolution 
 //calculate a valid range for the velocity element (current velocity±error) 
  

//using one extra reading calculate a temp velocity for the lateral element 
 

//if the temp velocity element is not in the valid range 
  { 
   //range is broken 
   //if temp velocity element < current velocity element  
    //set current velocity element to low end of valid range 
   //else 
    //set current velocity element to high end of valid range 
  } 
  //else    

{ 
   //set current velocity element to temp velocity element 
  } 
 } 
 
 /*Attempt to update the longitudinal component of the velocity vector*/ 
 /*use old velocity calculations to reduce the error due to resolution until*/ 
 /*all stored data has been used or the calculation violates the threshold of error*/             
 /*Start with the most recent data and work backwards*/            
        //for up to one seconds worth of velocity inputs and while range is not broken 

{ 
 //calculate the possible longitudinal error due GPS to resolution 
 //calculate a valid range for the velocity element (current velocity±error) 
  

//using one extra reading calculate a temp velocity for the longitudinal element 
 

//if the temp velocity element is not in the valid range 
  { 
   //range is broken 
   //if temp velocity < current velocity  
    //set current velocity element to low end of valid range 
   //else 
    //set current velocity element to high end of valid range 
  } 
  //else    

{ 
   //set current velocity element to temp velocity element 
  } 
 } 
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 /*Attempt to update the vertical component of the velocity vector*/ 
 /*use old velocity calculations to reduce the error due to resolution until*/ 
 /*all stored data has been used or the calculation violates the threshold of error*/             
 /*Start with the most recent data and work backwards*/            
        //for up to one seconds worth of velocity inputs and while range is not broken 

{ 
 //calculate the possible vertical error due to GPS resolution 
 //calculate a valid range for the velocity element (current velocity±error) 
  

//using one extra reading calculate a temp velocity for the vertical element 
 

//if the temp velocity element is not in the valid range 
  { 
   //range is broken 
   //if temp velocity < current velocity  
    //set current velocity element to low end of valid range 
   //else 
    //set current velocity element to high end of valid range 
  } 
  //else    

{ 
   //set current velocity element to temp velocity element 
  } 
 } 
} 
 

G.14.17  calcSlope(…) 

 

/* Function:  Attempts to estimate the drift, or slope of the error, in the integrated */ 
/*  velocity calculations       */ 
/* Inputs:  1) Array representing the GPS velocity vector    */ 
/*  2) Array representing the current IMU calculated velocity vector  */ 
/*  3) Array representing the previously calculate slope vector  */ 
/*  4) Array representing the Euler angles     */ 
/* Outputs:  1) Updated slope vector       */ 
void calcSlope(…) 
{ 
 /*Once the slope has converged it should be relatively constant…thus update the*/ 

/*Kalman filter to allow for slower change after takeoff*/ 
 //if takeoff is complete and all filters are not finished updating 
 { 
  //set updating to finished 
  //if Kalman for element one is less then desired 
  { 
   //increment Kalman one (R[1] + a constant) 
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   //set updating to not finished 
  } 
 
  //if Kalman for element two is less then desired 
  { 
   //increment Kalman two (R[2] + a constant) 
   //set updating to not finished 
  } 
 
  //if Kalman for element three is less then desired 
  { 
   //increment Kalman three (R[3] + a constant) 
   //set updating to not finished 
  } 
 } 
 
 //if this is the first run of this function 
 { 
  /*setup array to store one seconds worth of integrated velocities*/ 
  //initialize array of old integrated velocities to zero 
 
  /*setup array to store one seconds worth of offsets between velocities*/ 
  //initialize array of old offsets to zero 
 } 
  
 //store the integrated velocity input into old velocity array 
 
         /*calculate offset of the two velocities for each component…note that GPS is*/ 

/*assumed to have a one second delay*/ 
 //GPS velocity minus integrated velocity from one second ago (element one) 
 //GPS velocity minus integrated velocity from one second ago (element two) 
 //GPS velocity minus integrated velocity from one second ago (element three) 
  
 /*calculate the slope of error based on the current offset and the offset from one*/ 

/*second ago*/ 
//current offset minus offset from one second ago (element one) 
//current offset minus offset from one second ago (element two) 
//current offset minus offset from one second ago (element three) 

 
 /*rotate elements one and three to the local coordinate frame about the vertical axis*/ 

/*…use zero value for element two*/ 
 //setLocalRotationMatrices(...); 
  
 /*only multiply the matrix to rotate about the vertical axis*/ 
 //multMatrices(…); 
 
         /*update slope values*/ 
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 //slope element one = input slope element one + rotated element one 

//slope element two = input slope element two + slope of error for element two 
//slope element one = input slope element three + rotated element three 

             
         //store calculated offset into old offset array 
 
            //Combine input slope with newly calculated slope using Kalman filter (element one) 
            //Combine input slope with newly calculated slope using Kalman filter (element two) 
            //Combine input slope with newly calculated slope using Kalman filter (element three) 
  
 //set output array to values of Kalman filtered slopes 
} 
 

G.14.18  calcVelocity(…) 

 

/* Function:  Calculates the velocity for the current time step    */ 
/* Inputs:  1) current latitude (value not reference)     */ 
/*  2) current longitude (value not reference)    */ 
/*  3) previous latitude       */ 
/*  4) previous longitude       */ 
/*  5) current altitude       */ 
/*  6) previous altitude        */ 
/*  7) Array of Euler angles       */ 
/*  8) IMU timestamp       */ 
/*  9) new gps variable (first time this data has been processed by this */ 
/*  function        */ 
/*  10) IMU timestamp last time this function was called   */ 
/* Outputs:  1) Array representing the velocity vector     */ 
void calcVelocity(…) 
{ 
 /*calc time difference between current and old IMU timestamps*/ 
 //timeDifference(…); 
 
 //if this is the first time this function has been called 
 { 
  //set old_gps velocity to zero 
  //create array to store one second of integrated velocities 
  //initialize array of velocities to zero 
 
  //set slope vector to zero 
  //set output vector to zero 
  //return; 

} 
 

/*Kalman filters initialized to allow velocity to change quickly (i.e. low ‘R’ value)*/  
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/*to allow quick compensation while the bias is converging.  After convergence */ 
/*the Kalman filters are updated to prevent quick velocity changes*/ 

 //if takeoff is complete and all filters are not finished updating 
 { 
  //set updating to finished 
  //if Kalman for element one is less then desired 
  { 
   //increment Kalman one (R[1] + a constant) 
   //set updating to not finished 
  } 
 
  //if Kalman for element two is less then desired 
  { 
   //increment Kalman two (R[2] + a constant) 
   //set updating to not finished 
  } 
 
  //if Kalman for element three is less then desired 
  { 
   //increment Kalman three (R[3] + a constant) 
   //set updating to not finished 
  } 
 } 
 

//if the gps data is new 
 {                     
  //translateVelocity(…) 
 
  //use the world model to calculate the X, Y distances in feet 
  //set vertical distance to current altitude minus old altitude 
  
  /*create a velocity vector based on distances times the GPS frequency*/                       
              //velocity element one = Y distance *GPS frequency 
  //velocity element two = vertical distance *GPS frequency 

//velocity element three = X distance *GPS frequency 
 
  // gpsVelocity(…); 
  // calcSlope(…);             
 

/*use the difference between the current GPS velocity and the velocity from*/  
/*one second ago to update to update the current integrated velocity*/ 

             //integrated velocity element one += Kalman gain*velocity one diff 
             //integrated velocity element two += Kalman gain*velocity two diff 
             //integrated velocity element three += Kalman gain*velocity three diff 
 
  //store integrated velocity vector in old vector array 
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  //set old gps velocity to current gps velocity for next function call   
        } 
                 
 //if time difference between the old and new IMU timestamps is > zero 
 { 
  /*setup local rotation matrices*/ 
  //setLocalRotationMatrices(…); 
 
  /*rotate global gravity vector about the lateral axis*/ 
  //multMatrices(…); 
  /*rotate global gravity vector about longitudinal axis*/ 
  //multMatrices(…); 
  /*setup the acceleration matrix*/ 
  //accelerations element one = acceleration on pitch axis;  

//accelerations element two = acceleration on vertical axis; 
//accelerations element three = acceleration on roll axis; 

 
  //subtract gravity vector from acceleration vector  
 
  /*setup world rotation matrices*/ 
  //setWorldRotationMatrices(…); 
 
  /*rotate accelerations about the longitudinal axis*/ 
  //multMatrices(…); 
  /*rotate accelerations about the lateral axis*/ 
  //multMatrices(…); 
    
  //subtract the drift vector from the accelerations vector 
 
  /*rotate accelerations vector about the vertical axis*/ 
  //multMatrices(…); 
 
  //average current acceleration vector with old acceleration vector 
 
  /*calculate velocity change since last IMU reading*/ 
  /*9.800722 = conversion from g-force to meters per second*/ 

/*3.2808399 = conversion from meters to feet*/ 
//change vector= averaged vector*9.800722*3.2808399*IMU time diff 

    
  //add change vector to the integrated velocity vector 
  //add change vector to IMU calculated velocity vector 
 
  //set old accel vector to current accel vector for next function call  
 } 
 
 /*setup local rotation matrices*/ 
 //setLocalRotationMatrices(...); 
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 //rotate integrated velocity vector about the vertical axis 
 //multMatrices(…); 
 
 //set output vector to rotated velocity vector    
} 
 

G.14.19  electricMixing(…) 

 

/* Function:  Converts controller outputs to pulse width values for a three point */ 
/*  swashplate        */ 
/* Inputs:  1) roll command from controller      */ 
/*  2) pitch command from controller      */ 
/*  3) collective command from controller      */ 
/* Outputs:  1) left servo pulse width       */ 
/*  2) right servo pulse width       */ 
/*  3) front servo pulse width       */ 
void electricMixing(…) 
{  
 
 /*setup local rotation matrices*/ 
 //setLocalRotationMatrices(…); 
 
 /*rotate global integration vector about the vertical axis*/ 
 //multMatrices(…); 
 
 /*compute pulse widths for the roll command*/ 
 //if roll command > zero 
  //roll PW = (left servo’s max PW – its neutral PW) * roll command 
 //else 
  //roll PW = (left servo’s neutral PW – its minimum PW) * roll command 
  
 //if (left’s neutral PW+roll PW+roll trim+roll integration element) > left’s max PW 
 { 
  //display "Warning: PW value exceeded Left Max\n"); 
  //set left servo’s PW to the left servo’s max PW 
  //set right servo’s PW = right’s neutral PW+left’s max PW-left’s neutral PW 
 } 
 //else if (left’s neutral PW+roll PW+roll trim+roll integration element) < left’s min PW 
 { 
  //display "Warning: PW value exceeded Left Min\n"); 
  //set left servo’s PW to the left servo’s min PW 
  //set right servo’s PW = right’s neutral PW-(left’s neutral PW-left’s min PW) 
 } 
 else 
 { 
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  //set left’s PW = left’s neutral PW+roll PW+roll trim+roll integration element 

//set right’s PW = right’s neutral PW+roll PW+roll trim+roll integration element 
 } 
 
 /*compute pulse widths for the pitch command*/ 
 //if pitch command > zero 
  //pitch PW = (front servo’s max PW – its neutral PW) * pitch command 
 //else 
  //pitch PW = (front servo’s neutral PW – its minimum PW) * pitch command 
  
 //if (front’s neutral PW+pitch PW+pitch trim+pitch integration elem) > front’s max PW 
 { 
  //display "Warning: PW value exceeded Front Max\n"); 
  //set front servo’s PW to the front servo’s max PW 
  //set left servo’s PW += (front’s max PW-front’s neutral PW)/2.0 

//set right servo’s PW -= (front’s max PW-front’s neutral PW)/2.0 
} 

 //elseif (front neutral PW+pitch PW+pitch trim+pitch integration elem) < front’s min PW 
 { 
  //set front servo’s PW to the front servo’s min PW 
  //set left servo’s PW += (front’s neutral PW-front’s min PW)/2.0 

//set right servo’s PW -= (front’s neutral PW-front’s min PW)/2.0 
} 

 //else 
 { 
  //set front servo’s PW =front’s neutral+pitch PW+pitch trim+pitch integrate elem 
  //set left servo’s PW += (pitch PW+pitch trim+pitch integrate elem)/2.0 

//set right servo’s PW -= (pitch PW+pitch trim+pitch integrate elem)/2.0 
 } 
  

/*compute pulse widths for the pitch command*/ 
 //if collective (coll) command > zero 
  //coll PW = (coll’s max PW – its neutral PW) * coll command 
 //else 
  //coll PW = (coll’s neutral PW – its minimum PW) * coll command 
  
 //if (coll’s neutral PW+coll PW+coll trim+coll integration elem) > coll’s max PW 
 { 
  //display "Warning: PW value exceeded Collective Max\n"); 
  //set front servo’s PW += coll’s max PW- coll neutral PW 
  //set left servo’s PW -= coll’s max PW- coll neutral PW 

//set right servo’s PW += coll’s max PW- coll neutral PW 
} 

 //elseif (coll’s neutral PW+coll PW+coll trim+coll integration elem) < coll’s min PW 
 { 
  //display "Warning: PW value exceeded Collective Min\n"); 
  //set front servo’s PW -= coll’s neutral PW+(coll’s neutral PW- coll’s min PW) 
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  //set left servo’s PW += coll’s neutral PW+(coll’s neutral PW- coll’s min PW) 

//set right servo’s PW -= coll’s neutral PW+(coll’s neutral PW- coll’s min PW) 
} 

 //else 
 { 
  //set front servo’s PW += coll PW+coll trim+coll integration elem-coll’s neutral 
  //set left servo’s PW -= coll PW+coll trim+coll integration elem-coll’s neutral 

//set right servo’s PW += coll PW+coll trim+coll integration elem-coll’s neutral 
 } 
} 
 

G.14.20  initalizeSystem( ) 

 

/* Function:  Sets the waypoints, sets up the fuzzy controllers, calculates global */ 
/*  gravity         */ 
/*  vector, and initializes several process variables    */ 
/* Inputs:  N/A         */ 
/* Outputs:  N/A         */ 
int initalizeSystem( ) 
{ 
 //setup global array of latitude waypoints 
 //setup global array of longitude waypoints 
 //setup global array of altitude waypoints 
 //setup global array of heading waypoints 
 
 //set a variable for the number of waypoints to attempt 
 //set starting waypoints to first elements in waypoint arrays 
 
 //set acceleration variants velocity array to zero 
  
 //createSharedMem() 
 //if shared memory fails 

{ 
  //display error message 
  //return -1; 
 } 
 
 /*obtain data matrix and FIS matrix for roll, pitch, yaw, and collective controllers*/ 
 //roll matrix = returnFismatrix(…); 
 //pitch matrix = returnFismatrix(…); 
 //yaw matrix = returnFismatrix(…); 
 //coll matrix = returnFismatrix(…); 
 
 /* build FIS data structure for roll, pitch, yaw, and collective*/ 
 //roll fis = (FIS *)fisCalloc(…); 
 // fisBuildFisNode(…); 
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 //pitch fis = (FIS *)fisCalloc(…); 
 // fisBuildFisNode(…); 
 //yaw fis = (FIS *)fisCalloc(…); 
 // fisBuildFisNode(…); 
 //coll fis = (FIS *)fisCalloc(…); 
 // fisBuildFisNode(…); 
  
 /*install signal handler for manual break*/ 
 //signal(…); 
 
 //getIMU(); 
 
 //set old imu timestamp to current imu timestamp 
 //set global gravity vector to zero 
 
 /*attempt to calculate the total gravity vector*/ 
 //while 5 seconds of data has not been gathered 
 { 
  /*wait for new imu data*/ 
  //while old imu timestamp = = new imu timestamp 
  { 
   usleep(…); 
   getIMU(…); 
  } 
 
  //set old timestamp to new timestamp 
 
  /*setup world rotation matrices*/ 
  //setWorldRotationMatrices(…); 
 
  /*setup acceleration vector*/ 
  //set acceleration element one to pitch axis acceleration  
  //set acceleration element two to vertical axis acceleration 
  //set acceleration element three to roll axis acceleration 
     
  /*rotate acceleration vector about longitudinal, lateral, then vertical axes*/ 
  //multMatrices(…); 
  //multMatrices(...); 
  //multMatrices(...); 
 
  //add the rotated vector to the global gravity vector 
  //increment a counter 
 } 
 
 /*average gravity readings*/ 
 //divide gravity vector by counter 
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 //getGPS(…) 
 //set old latitude to current latitude 

//set old longitude to current longitude 
//set old altitude to current altitude (in feet) 

 
 /*set old imu timestamp*/ 
 //getCurrentTime(…); 
} 
 

G.14.21  takeOff( ) 

 

/* Function:  This function manages the takeoff procedure by collecting and  */  
/*  calculating the appropriate data for the controllers, passing the data to */ 
/*  the controllers, converting controller output to PW signals, and sending */ 
/*  the requested servo positions to the SSC.  This procedure is complete */ 
/*  when the vehicle has successfully lifted off to a preset altitude.   */ 
/* Inputs:  N/A         */ 
/* Outputs:  N/A         */ 
int takeOff( ) 
{ 

//setup local variables (including static variables) 
 
 //getLaser(…); 

 
//getGPS(…); 

 //convert altitude measurement from meters to feet 
  

//getIMU(…); 
   
 //if there is no new GPS or IMU data 
 { 
  usleep(100); 
  return 1; 
 } 
 
 //if we do not have GPS lock (i.e. lock == 0) 
 { 
  /*set a reset variable to assure velocities are not calculated due to loss*/ 

reset=1; 
  //if we have never had a GPS lock 
  { 
   //if a new gps message was just received 
   { 
    //output to screen "GPS: No Lock!  Waiting for lock.” 
   } 
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   /*output neutral values and low throttle value*/    
   //electricMixing(…); 
   //putControllServos(…); 
 
   return 1; 
  } 
  //else if a new gps message was just received 
   //output to screen "GPS: No Lock!” 
 } 
 //else if gps lock is poor (lock == 1) and a new message was received 
 { 
  //output to screen "WARNING: Differential Lock NOT Available” 
 } 
 
 //if we just acquired a gps lock (i.e. reset == 1 && lock > 0) 
 { 
  //set old latitude to current latitude 
  //set old longitude to current longitude 
  //set old altitude to current altitude 
  reset = 0; 
 } 
   
 //getStat(…); 
 
 //if we are in computer control and the takeoff heading has not been set 
 {  
  //set takeoff heading to current heading 
 } 
 
 //if computer control and takeoff position has not been set and we are in stage 1 

{ 
//set the last last waypoint and current waypoint equal to current latitude and   
longitude// 

 } 
 else if not in computer control 
 { 
  //set the last waypoint to the current waypoint 
  //unset takeoff position 
 } 
   
 //average all laser readings requested  
 
 //if the laser average is zero and we are in stage 1 or 2 
 { 
  //display to screen "Warning: Laser may not be active" 
  fflush(stdout); 
 } 
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 /*determine if takeoff altitude has been reached) 
 //if laser average is 1.5 meters or zero and we are in stage 3 
 { 
  //return 0; 
 } 

//else if we have reached the desired altitude for the first waypoint (assumed to be above 
the takeoff altitude)// 

 { 
  //display to screen "Error: Altitude reached...assuming laser is malfunctioning" 
  //display to screen "Error: Vehicle will not land automatically" 
  fflush(stdout); 
  //set landing request to zero 
  return 0; 
 } 
 
 //if we have a gps lock 
 { 
  //calcVelocity(…); 
  //gpsRollPitchError(…); 
 
  /*setup rotation matrices*/ 
  //setLocalRotationMatrices(…); 
 
  /*rotate lateral and longitudinal error to local coordinate frame*/ 
  //multMatrices(…); 
  //if abs(pitching error) is > 50 and the abs (pitching error) > abs(rolling error) 
  { 
   //set pitching error to 50 
   //proportionally reduce the rolling error  
  } 
  //if abs(rolling error) is > 50 and the abs (rolling error) > abs(pitching error) 
  { 
   //set rolling error to 50 
   //proportionally reduce the pitching error  
  } 
 } 
 //else 
 { 
  //Set the position error and velocities of roll, pitch, and collective to zero  
 } 
 
 //if computer is in control and we are in stage 3 
 { 
    

//if the collective error is not small && the collective velocity is not in the 
direction of the error// 
{ 
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 //set a temporary collective trim variable 
} 

 
//if the pitching error is not small && the pitching velocity is not in the direction 
of the error && the pitching acceleration variant is not in the direction of error// 
{ 
 //set a temporary pitching trim variable 
} 

 
//if the rolling error is not small && the rolling velocity is not in the direction of 
the error && the rolling acceleration variant is not in the direction of error// 
{ 
 //set a temporary rolling trim variable 
} 

 
  /*setup rotation matrices*/ 
  //setWorldRotationMatrices(…); 
 
  /*rotate the temporary trim variables*/ 
  //multMatrices(...); 
 
  //add rotated variables to the global trim variables 
 } 
  
 /*rotate global trim variables to the local coordinate frame*/ 
 //setLocalRotationMatrices(...); 
 //multMatrices(...); 

//set roll angle equal to the IMU roll angle – rotated global trim value*a small constant 
(i.e. 0.1)// 
//set pitch angle equal to the IMU pitch angle – rotated global trim value*a small constant 
(i.e. 0.1)// 
//set heading error = calcYawError(…); 

 
 //if we have a gps lock 
  //set collective error to the altitude set point – current altitude 
 
 //sum the last seven velocity calculations for the roll, pitch, and collective 
 //divide each sum by the time that passed over those last seven readings (acc_change) 
 
 //update stored velocities and times with the current velocity 
 
 //if we have at least seven velocities stored 
 { 
  /*use a first order kalman filter to update the variant acceleration for the roll*/ 
  //variant_accel = variant_accel + gain * (acc_change - variant_accel) 
 

/*use a first order kalman filter to update the variant acceleration for the pitch*/ 
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  //variant_accel = variant_accel + gain * (acc_change - variant_accel) 
 

/*use a first order kalman filter to update the variant acceleration for collective*/ 
  //variant_accel = variant_accel + gain * (acc_change - variant_accel) 
 } 
 
 /*get control output for the roll*/ 
 //getFisOutput(…); 
 /*allow other processes to operate*/ 
 usleep(1); 

/*get control output for the pitch*/ 
//getFisOutput(…); 
/*get control output for the yaw*/ 
//getFisOutput(…); 
/*get control output for the collective*/ 

 //getFisOutput(…); 
   
 /*calculate PW for the yaw*/ 
 //if yaw control is positive 
  //yaw PW = yaw control *(yaw max – yaw neutral)+yaw neutral;  
 //else 
  //yaw PW = yaw neutral + yaw control * ( yaw neutral – yaw minimum); 
 
 //if we are in stage zero 
 { 
  //if we are using a new gps message 
  { 
   //display to screen "Waiting for convergence" 
   fflush(stdout); 
  } 
 
  //if we have been in this stage for approximately 15 seconds 
   //set stage = 1 
 
  //electricMixing(…) 
  //putControllServos(…) 
 } 
 //else if we are in stage one 
 { 
  //if we are in computer control 
  { 
   /*throttle up slowly at first*/ 
   //if throttle PW > 1200  
   { 
    //if we are using a new gps message 
    {    
     //increase throttle PW by 5 
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    } 
   } 

//else if we are using a new gps message and throttle PW < throttle  
neutral// 

   { 
    /* ESC requires a small pause*/ 
    //if this statement has been ran > 100 times 
     //increase throttle PW by 10     

} 
 
   //if throttle PW >= THROTTLE_N 
    //set stage = 2 
 
   //electricMixing(…) 

//putControllServos(…) 
  } 
  //else 
  { 
   //if we are using a new gps message 
   { 
    //display to screen "Takeoff Restart" 
    fflush(stdout); 
   } 
   //set throttle PW to throttle minimum 
 
   //electricMixing(…) 
   //putControllServos(…); 
  } 
 } 
 //else if we are in computer control and we are in stage two 
 { 
  //if the collective command is less than the collective’s neutral 
  { 
   //increase the collective command by a small amount (i.e. 0.0025) 
   //electricMixing(…) 
  } 
  else 
  { 
   //electricMixing(…) 
   //set stage to three 
  } 
 
  //putControllServos(…); 
 } 
 //else if we are in computer control 
 { 
  //electricMixing(…) 
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  //putControllServos(…) 
 } 
 //else 
 { 
  //electricMixing(…) 
  //putControllServos(…) 
 } 
 
 //if we are using a new gps 
 { 
  //set old latitude equal to current latitude 
  //set old longitude equal to current longitude 
  //set old altitude equal to current altitude 
 } 
 
 //set old imu time to current imu time 
    
 //storeData(…) 
 
 //getCurrentTime(…); 
 
 /*calculate the time passed since the last time this function completed 
 //diff = timeDifference(…); 
   
 //if diff is too large (i.e. diff>0.015) 
 { 
  //display to screen "Navigation Alarm: Time between control calculations low” 
  fflush(stdout); 
 } 
    
 /*set the end time for the last time this function ran*/  
 //getCurrentTime(…) 
  

return 1; 
} 
 

G.14.22  landing( ) 

 

/* Function:  This function manages the landing procedure by collecting and  */  
/*  calculating the appropriate data for the controllers, passing the data to */ 
/*  the controllers, converting controller output to PW signals, and sending */ 
/*  the requested servo positions to the SSC.  This procedure is complete */ 
/*  when the vehicle has successfully landed and the motor has powered */ 
/*  down          */ 
/* Inputs:  N/A         */ 
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/* Outputs:  N/A         */ 
int landing( ) 
{ 
 

//setup local variables (including static variables) 
 
 //getLaser(…); 

 
//getGPS(…); 

 //convert altitude measurement from meters to feet 
  

//getIMU(…); 
   
 //if there is no new GPS or IMU data 
 { 
  usleep(100); 
  return 1; 
 } 
 
 //if we do not have GPS lock (i.e. lock == 0) 
 { 
  /*set a reset variable to assure velocities are not calculated due to loss*/ 

reset=1; 
  //output to screen "GPS: No Lock!” 
 } 
 //else if gps lock is poor (lock == 1) and a new message was received 
 { 
  //output to screen "WARNING: Differential Lock NOT Available” 
 } 
 
 //if we just acquired a gps lock (i.e. reset == 1 && lock > 0) 
 { 
  //set old latitude to current latitude 
  //set old longitude to current longitude 
  //set old altitude to current altitude 
  reset = 0; 
 } 
  
 //if we have a gps lock 
 { 
  //calculate offset between current latitude and the waypoint latitude 
  //calculate offset between current longitude and the waypoint longitude 
 } 
 //else 
 { 
  //set latitude and longitude offsets to zero 
 } 
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 //getStat(…); 
 
 
 //if we just entered stage 2 
 { 
  //set the waypoint latitude to the current latitude 
  //set the waypoint longitude to the current longitude 
 } 
 
 //for all laser data 
 { 
  //if laser data is > 100 (i.e. a valid value) 
  { 
   //total = total + laser data 
  } 
 } 
 
 //if the number of valid laser readings is greater than zero 
  //set laser average = laser_average / number of valid readings; 
 //else 
  //set laser_average = 0; 
 
 //if the laser average > 100 and < 2500 and at least 75% of the laser readings were valid 
  //set stage to two 

//else if the laser average < 175 and at least 90% of the laser readings were valid and we 
are in stage two// 

  //set stage to three 
 //else if our stage is > 2 and the laser average > 500) 
 { 
  //display to screen "LANDING FAILURE: Final Stage entered incorrectly" 
  //display to screen "LANDING FAILURE: Attempting to recover" 
  fflush(stdout); 
  //set stage to two 
 } 
 //else if the laser average is zero and our stage is greater than one) 
 { 
  //display to screen "Warning: Laser reporting average of zero" 
  fflush(stdout); 
 } 
   
 /*have we reached our waypoint*/ 
 //if we have a gps lock and abs(lateral offset)<0.00001) and abs(longitudinal 

offset )<0.000010// 
 { 
  //if we are in stage one or two 
  { 
   //if collective error is <= 2.0 
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    //decrement altitude 
  } 
 } 
 
 /*assure the altitude set point is not above the current position*/ 
 //if we just started the landing procedure 
 { 
  //set the desired altitude to the current altitude 
 } 
 
 /*calculate the positional error and velocities*/ 
 //if we have a gps lock 
 { 
  //calcVelocity(…) 

//gpsRollPitchError(…) 
 
  /*rotate positional offset to the local coordinate frame*/ 
  //setLocalRotationMatrices(...) 
  //multMatrices(…) 
 
  //if abs(pitching error) is > 50 and the abs (pitching error) > abs(rolling error) 
  { 
   //set pitching error to 50 
   //proportionally reduce the rolling error  
  } 
  //if abs(rolling error) is > 50 and the abs (rolling error) > abs(pitching error) 
  { 
   //set rolling error to 50 
   //proportionally reduce the pitching error  
  } 
 } 
 //else 
 { 
  //Set the position error and velocities of roll, pitch, and collective to zero  
 } 
 
 //if the computer is in control 
 { 
  //if our stage is <= 2 
  {    

//if the collective error is negative and it is not small && the collective 
velocity is not down// 
{ 

  //set a negative temporary collective trim variable 
} 

  } 
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//if the pitching error is not small && the pitching velocity is not in the direction 
of the error && the pitching acceleration variant is not in the direction of error// 
{ 
 //set a temporary pitching trim variable 
} 

 
//if the rolling error is not small && the rolling velocity is not in the direction of 
the error && the rolling acceleration variant is not in the direction of error// 
{ 
 //set a temporary rolling trim variable 
} 

 
  /*setup rotation matrices*/ 
  //setWorldRotationMatrices(…); 
 
  /*rotate the temporary trim variables*/ 
  //multMatrices(...); 
 
  //add rotated variables to the global trim variables 
 } 
  
 /*rotate global trim variables to the local coordinate frame*/ 
 //setLocalRotationMatrices(...); 
 //multMatrices(...); 
 

//set roll angle equal to the IMU roll angle – rotated global trim value*a small constant 
(i.e. 0.1)// 
//set pitch angle equal to the IMU pitch angle – rotated global trim value*a small constant 
(i.e. 0.1)// 
//set heading error = calcYawError(…); 

 
 //if we have a gps lock 
  //set collective error to the altitude set point – current altitude 
 
 //sum the last seven velocity calculations for the roll, pitch, and collective 
 //divide each sum by the time that passed over those last seven readings (acc_change) 
 
 //update stored velocities and times with the current velocity 
 
 //if we have at least seven velocities stored 
 { 
  /*use a first order kalman filter to update the variant acceleration for the roll*/ 
  //variant_accel = variant_accel + gain * (acc_change - variant_accel) 
 

/*use a first order kalman filter to update the variant acceleration for the pitch*/ 
  //variant_accel = variant_accel + gain * (acc_change - variant_accel) 
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/*use a first order kalman filter to update the variant acceleration for collective*/ 
  //variant_accel = variant_accel + gain * (acc_change - variant_accel) 
 } 
 
 /*get control output for the roll*/ 
 //getFisOutput(…); 
 /*allow other processes to operate*/ 
 usleep(1); 

/*get control output for the pitch*/ 
//getFisOutput(…); 
/*get control output for the yaw*/ 
//getFisOutput(…); 
/*get control output for the collective*/ 

 //getFisOutput(…); 
   
 /*calculate PW for the yaw*/ 
 //if yaw control is positive 
  //yaw PW = yaw control *(yaw max – yaw neutral)+yaw neutral;  
 //else 
  //yaw PW = yaw neutral + yaw control * ( yaw neutral – yaw minimum); 
   
 //if we are in stage three 
 { 
  //if this is the first run of stage 3 
  { 
   //if the fuzzy collective output is less than zero 
    //set the collective command = collective output / 2.0 

//else 
    //set collective command = 0.0 
  } 
  //else 
  { 
   //if collective command > -1.0 
    //decrement collective command by a small constant (i.e. 0.02) 
   //else 
    //set stage = 4 
  } 
    
  //electricMixing(…) 
 } 
 //else if we are in stage four 
 { 
  //if the throttle command > 1000 
   // set the throttle command = throttle command - 5 
 
  //electricMixing(…) 
 } 
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 else 
  //electricMixing(…) 
  
 //if our stage is < 4  
 {  
  /*output PW request using the neutral throttle PW*/ 

putControllServos(…) 
 } 
 //else 
 { 
  /*output PW request using the PW calculated*/ 
  putControllServos(…) 
 } 
 
 //if we are using a new gps 
 { 
  //set old latitude equal to current latitude 
  //set old longitude equal to current longitude 
  //set old altitude equal to current altitude 
 } 
 
 //set old imu time to current imu time 
    
 //storeData(…) 
 
 //getCurrentTime(…); 
 
 /*calculate the time passed since the last time this function completed 
 //diff = timeDifference(…); 
   
 //if diff is too large (i.e. diff>0.015) 
 { 
  //display to screen "Navigation Alarm: Time between control calculations low” 
  fflush(stdout); 
 } 
    
 /*set the end time for the last time this function ran*/  
 //getCurrentTime(…) 
 return 1; 
} 
 
G.14.23  navigate(…) 

 
/* Function:  This function manages the waypoint navigation procedure by collecting */ 
/*  and calculating the appropriate data for the controllers, passing the data */ 
/*  to the controllers, converting controller output to PW signals, and */ 
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/*  sending the requested servo positions to the SSC.  This procedure is */ 
/*  complete only if an autonomous landing has been requested and only */ 
/*  when all of the available waypoints have been transitioned.  */ 
/* Inputs:  1)  variable identifying if an autonomous landing was requested  */ 
/* Outputs:  N/A         */ 
int navigate(…) 
{ 

//setup local variables (including static variables) 
 
 //getLaser(…); 

 
//getGPS(…); 

 //convert altitude measurement from meters to feet 
  

//getIMU(…); 
   
 //if there is no new GPS or IMU data 
 { 
  usleep(100); 
  return 1; 
 } 
 
 //if we do not have GPS lock (i.e. lock == 0) 
 { 
  /*set a reset variable to assure velocities are not calculated due to loss*/ 

reset=1; 
  //output to screen "GPS: No Lock!” 
 } 
 //else if gps lock is poor (lock == 1) and a new message was received 
 { 
  //output to screen "WARNING: Differential Lock NOT Available” 
 } 
 
 //if we just acquired a gps lock (i.e. reset == 1 && lock > 0) 
 { 
  //set old latitude to current latitude 
  //set old longitude to current longitude 
  //set old altitude to current altitude 
  reset = 0; 
 } 
  
 //if we have a gps lock 
 { 
  //calculate offset between current latitude and the waypoint latitude 
  //calculate offset between current longitude and the waypoint longitude 
 } 
 //else 
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 { 
  //set latitude and longitude offsets to zero 
 } 
   
 //getStat(…); 
 
 //if our operating mode is “hover only” 
 { 
  //if we are in computer control 
  { 
   //if computer control was just now given 
   { 
    //set waypoint latitude to current latitude 
    //set waypoint longitude to current longitude 
    //set waypoint altitude to current altitude 
   } 
  } 
  //else 
  { 
   //set waypoint latitude to current latitude 
   //set waypoint longitude to current longitude 
  } 
 } 
     
 /*has the waypoint been reached*/ 

//if we have gps lock && abs(lateral offset)<0.000005 && abs(longitudinal  
offset )<0.000005 && abs(altitude offset)<=2.5 && abs(heading offset)<=5// 

 { 
  //if the vehicle has held this point for at least one second 
  { 
   //display "Waypoint Reached" 
   fflush(stdout); 
 
   //if there are more waypoints to go to 
   { 
    //set last waypoint to current waypoint 
    //set current waypoint to the next waypoint 
   } 
   //else if we are supposed to land 
    return 0; 
  } 
  //else 
   //display "Waiting for system to stabilize" 
 } 
 
 /*calculate position offsets and velocities*/ 
 //if we have a gps lock 
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 { 
  //calcVelocity(…) 
  //gpsRollPitchError(…) 
 
  /*rotate positional offsets to the local coordinate frame*/ 
  //setLocalRotationMatrices(...) 
  //multMatrices(…) 
 
  //if abs(pitching error) is > 25 and the abs (pitching error) > abs(rolling error) 
  { 
   //set pitching error to 25 
   //proportionally reduce the rolling error  
  } 
  //if abs(rolling error) is > 25 and the abs (rolling error) > abs(pitching error) 
  { 
   //set rolling error to 25 
   //proportionally reduce the pitching error  
  } 
 } 
 //else 
 { 
  //Set the position error and velocities of roll, pitch, and collective to zero  
 } 
 
 //if we are in computer control 
 { 
 
  /*don't make adjustments when transitioning to a new waypoint*/ 
  //if we have recently changed waypoints (within one second) 
  { 
   //do nothing 
  } 
  //else 
  {  
  

//if the collective error is not small && the collective velocity is not in 
the direction of the error// 
{ 

  //set a temporary collective trim variable 
} 

 
//if the pitching error is not small && the pitching velocity is not in the 
direction of the error && the pitching acceleration variant is not in the 
direction of error// 
{ 

  //set a temporary pitching trim variable 
} 
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//if the rolling error is not small && the rolling velocity is not in the 
direction of the error && the rolling acceleration variant is not in the 
direction of error// 
{ 

  //set a temporary rolling trim variable 
} 

 
   /*setup rotation matrices*/ 
   //setWorldRotationMatrices(…); 
 
   /*rotate the temporary trim variables*/ 
   //multMatrices(...); 
 
   //add rotated variables to the global trim variables 
  } 
 } 
  
 /*rotate global trim variables to the local coordinate frame*/ 
 //setLocalRotationMatrices(...); 
 //multMatrices(...); 
 

//set roll angle equal to the IMU roll angle – rotated global trim value*a small constant 
(i.e. 0.1)// 
//set pitch angle equal to the IMU pitch angle – rotated global trim value*a small constant 
(i.e. 0.1)// 
//set heading error = calcYawError(…); 

 
 //if we have a gps lock 
  //set collective error to the altitude set point – current altitude 
 
 //sum the last seven velocity calculations for the roll, pitch, and collective 
 //divide each sum by the time that passed over those last seven readings (acc_change) 
 
 //update stored velocities and times with the current velocity and time 
 
 //if we have at least seven velocities stored 
 { 
  /*use a first order kalman filter to update the variant acceleration for the roll*/ 
  //variant_accel = variant_accel + gain * (acc_change - variant_accel) 
 

/*use a first order kalman filter to update the variant acceleration for the pitch*/ 
  //variant_accel = variant_accel + gain * (acc_change - variant_accel) 
 

/*use a first order kalman filter to update the variant acceleration for collective*/ 
  //variant_accel = variant_accel + gain * (acc_change - variant_accel) 
 } 
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 /*get control output for the roll*/ 
 //getFisOutput(…); 
 /*allow other processes to operate*/ 
 usleep(1); 

/*get control output for the pitch*/ 
//getFisOutput(…); 
/*get control output for the yaw*/ 
//getFisOutput(…); 
/*get control output for the collective*/ 

 //getFisOutput(…); 
   
 /*calculate PW for the yaw*/ 
 //if yaw control is positive 
  //yaw PW = yaw control *(yaw max – yaw neutral)+yaw neutral;  
 //else 
  //yaw PW = yaw neutral + yaw control * ( yaw neutral – yaw minimum); 
  
 //electricMixing(…) 
 //putControllServos(…) 
   
 //if we are using a new gps 
 { 
  //set old latitude equal to current latitude 
  //set old longitude equal to current longitude 
  //set old altitude equal to current altitude 
 } 
 
 //set old imu time to current imu time 
    
 //storeData(…) 
 
 //getCurrentTime(…); 
 
 /*calculate the time passed since the last time this function completed 
 //diff = timeDifference(…); 
   
 //if diff is too large (i.e. diff>0.015) 
 { 
  //display to screen "Navigation Alarm: Time between control calculations low” 
  fflush(stdout); 
 } 
    
 /*set the end time for the last time this function ran*/  
 //getCurrentTime(…) 
 return 1; 
} 
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G.14.24  main(…) 

 

/* Function:  This is the main function for the navigation process and is responsible for*/ 
/*  the flow of all navigation procedures     */ 
/* Inputs:  1)  variable identifying if an autonomous takeoff is being requested */ 
/*  2)  variable identifying if an autonomous landing is being requested */ 
/* Outputs:  N/A         */ 
int main(…)  
{ 
 
 //if the correct arguments are not passed to this process 
 { 
  //display "Usage Error” 
  return; 
 } 
 
 // initalizeSystem() 
 
 //if there is only one waypoint and neither a takeoff or landing was requested 
  //set operation to “hover_only” 
  
 /*takeoff*/ 
 //if takeoff was requested 
 { 

//display "Takeoff Initiated" 
  fflush(stdout); 
   
  //while the takeoff procedure has not returned a zero value 
   // takeOff() 
 
  //display "Takeoff Complete" 
  fflush(stdout); 
 } 
 
 //while the navigate procedure has not returned a zero value 

//navigate(…) 
 
 /*land*/ 
 //display "Landing Initiated" 
 fflush(stdout); 
   

//while the landing procedure has not returned a zero value 
//landing() 

 //display "Landing Complete" 
 fflush(stdout); 
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 //while(1) 
 { 

/*send neutral values for roll, pitch, and yaw and minimum values for*/ 
/*throttle and collective*/ 

  //electricMixing(…) 
  //putControllServos(…) 
  //sleep for 1/100th of a second 
 } 
} 
 

G.15 Scripts 

 

G.15.1 Prep 

 

echo 'Starting GPS' 
./gps & 
sleep 1 
echo 'Starting IMU' 
./imu & 
sleep 1 
echo 'Starting Servo Controller' 
./servo & 
sleep 1 
echo 'Starting Data Collection' 
./collect &  
sleep 1 
echo 'Starting Laser Collection' 
./laser & 
sleep 2 
 

G.15.2 Transfer 

 

make 
#note that 15.10.10.109 is the IP for the testbed 
scp gps imu data_test servo collect navigate baro laser src/conv/*.fis src/scripts/prep 
15.10.10.109:. 
 

G.15.3 Syslinux.cfg 

 

DEFAULT Lite 
PROMPT 1 
IMPLICIT 0 
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TIMEOUT 1 
 
LABEL Lite 

KERNEL vmlinuz 
APPEND initrd=lite.gz ramdisk=200000 rw root=/dev/ram 

 

G.15.4 Makefile 

 

SRC  = src 
SRC1     = src/gps 
SRC2     = src/conv 
SRC3     = src/imu 
SRC4     = src/test 
SRC5     = src/collect 
SRC6     = src/servo 
SRC7     = src/baro 
SRC8     = src/laser 
INC     = -I. -lm 
CC = gcc 
 
ifeq ($(HOSTTYPE),x86_64) 

LDLIBS  = -L. -L../lib -L/lib64 -L/usr/lib64 -L/usr/local/lib64 
else 
   LDLIBS  = -L. -L../lib -L/lib -L/usr/lib -L/usr/local/lib 
endif 
 
DBG     = -g 
CFLAGS  = $(DBG) $(INC) $(LDLIBS) 
 
TARGET1 = gps 
TARGET2 = navigate 
TARGET3 = imu 
TARGET4 = data_test 
TARGET5 = collect 
TARGET6 = servo 
TARGET7 = baro 
TARGET8 = laser 
 
FILES1  = $(SRC1)/$(TARGET1).c  
FILES2  = $(SRC2)/$(TARGET2).c $(SRC)/*.c #$(SRC2)/robotControls/*.c $(SRC2)/fis.c 
FILES3  = $(SRC3)/$(TARGET3).c $(SRC3)/m3dmgAdapter.c $(SRC3)/m3dmgUtils.c 
$(SRC3)/m3dmgSerialLinux.c 
FILES4  = $(SRC4)/$(TARGET4).c 
FILES5  = $(SRC5)/$(TARGET5).c 
FILES6  = $(SRC6)/$(TARGET6).c $(SRC)/*.c 
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FILES7  = $(SRC7)/$(TARGET7).c 
FILES8  = $(SRC8)/$(TARGET8).c 
 
all:    $(TARGET1) $(TARGET2) $(TARGET3) $(TARGET4) $(TARGET5) $(TARGET6) 
$(TARGET7) $(TARGET8) 
 
$(TARGET1): $(FILES1) 
 $(CC) $(FILES1) $(CFLAGS) -o $(TARGET1) 
$(TARGET2): $(FILES2) 
 $(CC) $(FILES2) $(CFLAGS) -o $(TARGET2) -lm 
$(TARGET3): $(FILES3) 
 $(CC) -DLINUX_OS $(FILES3) $(CFLAGS) -o $(TARGET3) -lm 
$(TARGET4): $(FILES4) 
 $(CC) $(FILES4) $(CFLAGS) -o $(TARGET4) 
$(TARGET5): $(FILES5) 
 $(CC) $(FILES5) $(CFLAGS) -o $(TARGET5) 
$(TARGET6): $(FILES6) 
 $(CC) $(FILES6) $(CFLAGS) -o $(TARGET6) 
$(TARGET7): $(FILES7) 
 $(CC) $(FILES7) $(CFLAGS) -o $(TARGET7) 
$(TARGET8): $(FILES8) 
 $(CC) $(FILES8) $(CFLAGS) -o $(TARGET8) 
 
clean: 
 rm -f $(SRC)/*~ $(SRC1)/*~ $(SRC2)/*~ $(SRC2)/*.o $(SRC3)/*~ $(SRC3)/*.o 
$(SRC4)/*~ $(SRC5)/*~ $(SRC6)/*~ $(SRC7)/*~ $(SRC8)/*~ *~ $(TARGET2) $(TARGET1) 
$(TARGET3) $(TARGET4) $(TARGET5) $(TARGET6) $(TARGET7) $(TARGET8) 
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H.1 Roll Controller Rules 

 

Table 14: Fuzzy Rules for the Roll Controller 

If 
Error 

is: & 
Velocity 

is: & 
Angle 

is: & Acceleration is: then Roll is:
          
 small  small  small  small  zero 
 small  small  small  left  right 
 small  small  small  right  left 
 small  small  left  small  right 
 small  small  left  left  right 
 small  small  left  right  zero 
 small  small  right  small  left 
 small  small  right  left  zero 
 small  small  right  right  left 
 small  small  bigL  small  medR
 small  small  bigL  left  bigR 
 small  small  bigL  right  right 
 small  small  bigR  small  medL
 small  small  bigR  left  left 
 small  small  bigR  right  bigL 
 small  left  small  small  right 
 small  left  small  left  right 
 small  left  small  right  right 
 small  left  left  small  medR
 small  left  left  left  bigR 
 small  left  left  right  right 
 small  left  right  small  right 
 small  left  right  left  medR
 small  left  right  right  right 
 small  left  bigL  small  bigR 
 small  left  bigL  left  bigR 
 small  left  bigL  right  right 
 small  left  bigR  small  zero 
 small  left  bigR  left  zero 
 small  left  bigR  right  left 
 small  right  small  small  left 
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Table 14 (Continued)  

  Small   right   small   left   left 
  Small   right   small   right   left 
  Small   right   left   small   left 
  Small   right   left   left   left 
  Small   right   left   right   medL
  small   right   right   small   medL
  small   right   right   left   left 
  small   right   right   right   bigL 
  small   right   bigL   small   zero 
  small   right   bigL   left   right 
  small   right   bigL   right   zero 
  small   right   bigR   small   bigL 
  small   right   bigR   left   left 
  small   right   bigR   right   bigL 
  small   bigL   small   small   bigR 
  small   bigL   small   left   bigR 
  small   bigL   small   right   medR
  small   bigL   left   small   bigR 
  small   bigL   left   left   bigR 
  small   bigL   left   right   bigR 
  small   bigL   right   small   medR
  small   bigL   right   left   medR
  small   bigL   right   right   right 
  small   bigL   bigL   small   bigR 
  small   bigL   bigL   left   bigR 
  small   bigL   bigL   right   bigR 
  small   bigL   bigR   small   zero 
  small   bigL   bigR   left   zero 
  small   bigL   bigR   right   zero 
  small   bigR   small   small   bigL 
  small   bigR   small   left   medL
  small   bigR   small   right   bigL 
  small   bigR   left   small   medL
  small   bigR   left   left   left 
  small   bigR   left   right   medL
  small   bigR   right   small   bigL 
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Table 14 (Continued) 

  small   bigR   right   left   bigL 
  small   bigR   right   right   bigL 
  small   bigR   bigL   small   zero 
  small   bigR   bigL   left   zero 
  small   bigR   bigL   right   zero 
  small   bigR   bigR   small   bigL 
  small   bigR   bigR   left   bigL 
  small   bigR   bigR   right   bigL 
  left   small   small   small   left 
  left   small   small   left   zero 
  left   small   small   right   left 
  left   small   left   small   zero 
  left   small   left   left   zero 
  left   small   left   right   left 
  left   small   right   small   left 
  left   small   right   left   left 
  left   small   right   right   medL
  left   small   bigL   small   right 
  left   small   bigL   left   right 
  left   small   bigL   right   zero 
  left   small   bigR   small   medL
  left   small   bigR   left   left 
  left   small   bigR   right   bigL 
  left   left   small   small   zero 
  left   left   small   left   zero 
  left   left   small   right   left 
  left   left   left   small   zero 
  left   left   left   left   right 
  left   left   left   right   zero 
  left   left   right   small   zero 
  left   left   right   left   zero 
  left   left   right   right   left 
  left   left   bigL   small   medR
  left   left   bigL   left   bigR 
  left   left   bigL   right   right 
  left   left   bigR   small   medL
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Table 14 (Continued) 

  left   left   bigR   left   left 
  left   left   bigR   right   medL
  left   right   small   small   medL
  left   right   small   left   medL
  left   right   small   right   bigL 
  left   right   left   small   medL
  left   right   left   left   left 
  left   right   left   right   medL
  left   right   right   small   medL
  left   right   right   left   medL
  left   right   right   right   bigL 
  left   right   bigL   small   zero 
  left   right   bigL   left   zero 
  left   right   bigL   right   zero 
  left   right   bigR   small   bigL 
  left   right   bigR   left   bigL 
  left   right   bigR   right   bigL 
  left   bigL   small   small   bigR 
  left   bigL   small   left   bigR 
  left   bigL   small   right   medR
  left   bigL   left   small   bigR 
  left   bigL   left   left   bigR 
  left   bigL   left   right   medR
  left   bigL   right   small   medR
  left   bigL   right   left   bigR 
  left   bigL   right   right   right 
  left   bigL   bigL   small   bigR 
  left   bigL   bigL   left   bigR 
  left   bigL   bigL   right   bigR 
  left   bigL   bigR   small   zero 
  left   bigL   bigR   left   zero 
  left   bigL   bigR   right   zero 
  left   bigR   small   small   bigL 
  left   bigR   small   left   bigL 
  left   bigR   small   right   bigL 
  left   bigR   left   small   bigL 
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Table 14 (Continued) 

  left   bigR   left   left   medL
  left   bigR   left   right   bigL 
  left   bigR   right   small   bigL 
  left   bigR   right   left   bigL 
  left   bigR   right   right   bigL 
  left   bigR   bigL   small   zero 
  left   bigR   bigL   left   zero 
  left   bigR   bigL   right   zero 
  left   bigR   bigR   small   bigL 
  left   bigR   bigR   left   bigL 
  left   bigR   bigR   right   bigL 
  right   small   small   small   right 
  right   small   small   left   right 
  right   small   small   right   zero 
  right   small   left   small   right 
  right   small   left   left   medR
  right   small   left   right   right 
  right   small   right   small   zero 
  right   small   right   left   right 
  right   small   right   right   zero 
  right   small   bigL   small   medR
  right   small   bigL   left   bigR 
  right   small   bigL   right   right 
  right   small   bigR   small   left 
  right   small   bigR   left   zero 
  right   small   bigR   right   left 
  right   left   small   small   medR
  right   left   small   left   bigR 
  right   left   small   right   medR
  right   left   left   small   medR
  right   left   left   left   bigR 
  right   left   left   right   medR
  right   left   right   small   medR
  right   left   right   left   medR
  right   left   right   right   right 
  right   left   bigL   small   bigR 
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Table 14 (Continued) 

  right   left   bigL   left   bigR 
  right   left   bigL   right   bigR 
  right   left   bigR   small   zero 
  right   left   bigR   left   zero 
  right   left   bigR   right   zero 
  right   right   small   small   zero 
  right   right   small   left   right 
  right   right   small   right   zero 
  right   right   left   small   zero 
  right   right   left   left   right 
  right   right   left   right   zero 
  right   right   right   small   zero 
  right   right   right   left   zero 
  right   right   right   right   left 
  right   right   bigL   small   medR
  right   right   bigL   left   medR
  right   right   bigL   right   right 
  right   right   bigR   small   medL
  right   right   bigR   left   left 
  right   right   bigR   right   bigL 
  right   bigL   small   small   bigR 
  right   bigL   small   left   bigR 
  right   bigL   small   right   bigR 
  right   bigL   left   small   bigR 
  right   bigL   left   left   bigR 
  right   bigL   left   right   bigR 
  right   bigL   right   small   bigR 
  right   bigL   right   left   bigR 
  right   bigL   right   right   medR
  right   bigL   bigL   small   bigR 
  right   bigL   bigL   left   bigR 
  right   bigL   bigL   right   bigR 
  right   bigL   bigR   small   zero 
  right   bigL   bigR   left   zero 
  right   bigL   bigR   right   zero 
  right   bigR   small   small   bigL 
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Table 14 (Continued) 

  right   bigR   small   left   medL
  right   bigR   small   right   bigL 
  right   bigR   left   small   medL
  right   bigR   left   left   left 
  right   bigR   left   right   bigL 
  right   bigR   right   small   bigL 
  right   bigR   right   left   medL
  right   bigR   right   right   bigL 
  right   bigR   bigL   small   zero 
  right   bigR   bigL   left   zero 
  right   bigR   bigL   right   zero 
  right   bigR   bigR   small   bigL 
  right   bigR   bigR   left   bigL 
  right   bigR   bigR   right   bigL 
  bigL   small   small   small   left 
  bigL   small   small   left   left 
  bigL   small   small   right   left 
  bigL   small   left   small   left 
  bigL   small   left   left   zero 
  bigL   small   left   right   left 
  bigL   small   right   small   medL
  bigL   small   right   left   left 
  bigL   small   right   right   medL
  bigL   small   bigL   small   zero 
  bigL   small   bigL   left   zero 
  bigL   small   bigL   right   zero 
  bigL   small   bigR   small   bigL 
  bigL   small   bigR   left   medL
  bigL   small   bigR   right   bigL 
  bigL   left   small   small   zero 
  bigL   left   small   left   zero 
  bigL   left   small   right   left 
  bigL   left   left   small   zero 
  bigL   left   left   left   zero 
  bigL   left   left   right   left 
  bigL   left   right   small   left 
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Table 14 (Continued) 

  bigL   left   right   left   zero 
  bigL   left   right   right   medL
  bigL   left   bigL   small   right 
  bigL   left   bigL   left   medR
  bigL   left   bigL   right   zero 
  bigL   left   bigR   small   bigL 
  bigL   left   bigR   left   medL
  bigL   left   bigR   right   bigL 
  bigL   right   small   small   medL
  bigL   right   small   left   medL
  bigL   right   small   right   bigL 
  bigL   right   left   small   medL
  bigL   right   left   left   left 
  bigL   right   left   right   medL
  bigL   right   right   small   medL
  bigL   right   right   left   medL
  bigL   right   right   right   bigL 
  bigL   right   bigL   small   zero 
  bigL   right   bigL   left   zero 
  bigL   right   bigL   right   zero 
  bigL   right   bigR   small   bigL 
  bigL   right   bigR   left   bigL 
  bigL   right   bigR   right   bigL 
  bigL   bigL   small   small   right 
  bigL   bigL   small   left   medR
  bigL   bigL   small   right   right 
  bigL   bigL   left   small   medR
  bigL   bigL   left   left   bigR 
  bigL   bigL   left   right   medR
  bigL   bigL   right   small   right 
  bigL   bigL   right   left   right 
  bigL   bigL   right   right   zero 
  bigL   bigL   bigL   small   bigR 
  bigL   bigL   bigL   left   bigR 
  bigL   bigL   bigL   right   bigR 
  bigL   bigL   bigR   small   zero 
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Table 14 (Continued) 

  bigL   bigL   bigR   left   zero 
  bigL   bigL   bigR   right   zero 
  bigL   bigR   small   small   bigL 
  bigL   bigR   small   left   bigL 
  bigL   bigR   small   right   bigL 
  bigL   bigR   left   small   bigL 
  bigL   bigR   left   left   medL
  bigL   bigR   left   right   bigL 
  bigL   bigR   right   small   bigL 
  bigL   bigR   right   left   bigL 
  bigL   bigR   right   right   bigL 
  bigL   bigR   bigL   small   zero 
  bigL   bigR   bigL   left   zero 
  bigL   bigR   bigL   right   zero 
  bigL   bigR   bigR   small   bigL 
  bigL   bigR   bigR   left   bigL 
  bigL   bigR   bigR   right   bigL 
  bigR   small   small   small   right 
  bigR   small   small   left   right 
  bigR   small   small   right   right 
  bigR   small   left   small   medR
  bigR   small   left   left   medR
  bigR   small   left   right   right 
  bigR   small   right   small   right 
  bigR   small   right   left   right 
  bigR   small   right   right   zero 
  bigR   small   bigL   small   bigR 
  bigR   small   bigL   left   bigR 
  bigR   small   bigL   right   medR
  bigR   small   bigR   small   zero 
  bigR   small   bigR   left   zero 
  bigR   small   bigR   right   zero 
  bigR   left   small   small   medR
  bigR   left   small   left   bigR 
  bigR   left   small   right   medR
  bigR   left   left   small   medR
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  bigR   left   left   left   bigR 
  bigR   left   left   right   medR
  bigR   left   right   small   medR
  bigR   left   right   left   medR
  bigR   left   right   right   right 
  bigR   left   bigL   small   bigR 
  bigR   left   bigL   left   bigR 
  bigR   left   bigL   right   bigR 
  bigR   left   bigR   small   zero 
  bigR   left   bigR   left   zero 
  bigR   left   bigR   right   zero 
  bigR   right   small   small   zero 
  bigR   right   small   left   right 
  bigR   right   small   right   zero 
  bigR   right   left   small   right 
  bigR   right   left   left   medR
  bigR   right   Left   right   zero 
  bigR   right   Right   small   zero 
  bigR   right   Right   left   right 
  bigR   right   Right   right   zero 
  bigR   right   bigL   small   bigR 
  bigR   right   bigL   left   bigR 
  bigR   right   bigL   right   medR
  bigR   right   bigR   small   left 
  bigR   right   bigR   left   zero 
  bigR   right   bigR   right   medL
  bigR   bigL   Small   small   bigR 
  bigR   bigL   Small   left   bigR 
  bigR   bigL   Small   right   bigR 
  bigR   bigL   Left   small   bigR 
  bigR   bigL   Left   left   bigR 
  bigR   bigL   Left   right   bigR 
  bigR   bigL   Right   small   bigR 
  bigR   bigL   Right   left   bigR 
  bigR   bigL   Right   right   medR
  bigR   bigL   bigL   small   bigR 
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Table 14 (Continued) 

  bigR   bigL   bigL   left   bigR 
  bigR   bigL   bigL   right   bigR 
  bigR   bigL   bigR   small   zero 
  bigR   bigL   bigR   left   zero 
  bigR   bigL   bigR   right   zero 
  bigR   bigR   small   small   left 
  bigR   bigR   small   left   left 
  bigR   bigR   small   right   medL
  bigR   bigR   left   small   left 
  bigR   bigR   left   left   zero 
  bigR   bigR   left   right   left 
  bigR   bigR   right   small   medL
  bigR   bigR   right   left   medL
  bigR   bigR   right   right   bigL 
  bigR   bigR   bigL   small   zero 
  bigR   bigR   bigL   left   zero 
  bigR   bigR   bigL   Right   Zero 
  bigR   bigR   bigR   Small   bigL 
  bigR   bigR   bigR   Left   bigL 
  bigR   bigR   bigR   Right   bigL 

 

H.2 Pitch Controller Rules 

 

Table 15: Fuzzy Rules for the Pitch Controller 

If Error is: & 
Velocity 

is: & Angle is: & Acceleration is: then Pitch is:
                    
  small   small   small   small   zero 
  small   small   small   backward   forward
  small   small   small   forward   backward
  small   small   backward   small   forward
  small   small   backward   backward   forward
  small   small   backward   forward   zero 
  small   small   forward   small   backward
  small   small   forward   backward   zero 
  small   small   forward   forward   backward
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Table 15 (Continued) 

  small   small   bigB   small   medF 
  small   small   bigB   backward   bigF 
  small   small   bigB   forward   forward
  small   small   bigF   small   medB 
  small   small   bigF   backward   backward
  small   small   bigF   forward   bigB 
  small   backward   small   small   forward
  small   backward   small   backward   forward
  small   backward   small   forward   forward
  small   backward   backward   small   medF 
  small   backward   backward   backward   bigF 
  small   backward   backward   forward   forward
  small   backward   forward   small   forward
  small   backward   forward   backward   medF 
  small   backward   forward   forward   forward
  small   backward   bigB   small   bigF 
  small   backward   bigB   backward   bigF 
  small   backward   bigB   forward   forward
  small   backward   bigF   small   zero 
  small   backward   bigF   backward   zero 
  small   backward   bigF   forward   backward
  small   forward   small   small   backward
  small   forward   small   backward   backward
  small   forward   small   forward   backward
  small   forward   backward   small   backward
  small   forward   backward   backward   backward
  small   forward   backward   forward   medB 
  small   forward   forward   small   medB 
  small   forward   forward   backward   backward
  small   forward   forward   forward   bigB 
  small   forward   bigB   small   zero 
  small   forward   bigB   backward   forward
  small   forward   bigB   forward   zero 
  small   forward   bigF   small   bigB 
  small   forward   bigF   backward   backward
  small   forward   bigF   forward   bigB 
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Table 15 (Continued) 

  small   bigB   small   small   bigF 
  small   bigB   small   backward   bigF 
  small   bigB   small   forward   medF 
  small   bigB   backward   small   bigF 
  small   bigB   backward   backward   bigF 
  small   bigB   backward   forward   bigF 
  small   bigB   forward   small   medF 
  small   bigB   forward   backward   medF 
  small   bigB   forward   forward   forward
  small   bigB   bigB   small   bigF 
  small   bigB   bigB   backward   bigF 
  small   bigB   bigB   forward   bigF 
  small   bigB   bigF   small   zero 
  small   bigB   bigF   backward   zero 
  small   bigB   bigF   forward   zero 
  small   bigF   small   small   bigB 
  small   bigF   small   backward   medB 
  small   bigF   small   forward   bigB 
  small   bigF   backward   small   medB 
  small   bigF   backward   backward   backward
  small   bigF   backward   forward   medB 
  small   bigF   forward   small   bigB 
  small   bigF   forward   backward   bigB 
  small   bigF   forward   forward   bigB 
  small   bigF   bigB   small   zero 
  small   bigF   bigB   backward   zero 
  small   bigF   bigB   forward   zero 
  small   bigF   bigF   small   bigB 
  small   bigF   bigF   backward   bigB 
  small   bigF   bigF   forward   bigB 
  backward   small   small   small   backward
  backward   small   small   backward   zero 
  backward   small   small   forward   backward
  backward   small   backward   small   zero 
  backward   small   backward   backward   zero 
  backward   small   backward   forward   backward
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Table 15 (Continued) 

  backward   small   forward   small   backward
  backward   small   forward   backward   backward
  backward   small   forward   forward   medB 
  backward   small   bigB   small   forward
  backward   small   bigB   backward   forward
  backward   small   bigB   forward   zero 
  backward   small   bigF   small   medB 
  backward   small   bigF   backward   backward
  backward   small   bigF   forward   bigB 
  backward   backward   small   small   zero 
  backward   backward   small   backward   zero 
  backward   backward   small   forward   backward
  backward   backward   backward   small   zero 
  backward   backward   backward   backward   forward
  backward   backward   backward   forward   zero 
  backward   backward   forward   small   zero 
  backward   backward   forward   backward   zero 
  backward   backward   forward   forward   backward
  backward   backward   bigB   small   medF 
  backward   backward   bigB   backward   bigF 
  backward   backward   bigB   forward   forward
  backward   backward   bigF   small   medB 
  backward   backward   bigF   backward   backward
  backward   backward   bigF   forward   medB 
  backward   forward   small   small   medB 
  backward   forward   small   backward   medB 
  backward   forward   small   forward   bigB 
  backward   forward   backward   small   medB 
  backward   forward   backward   backward   backward
  backward   forward   backward   forward   medB 
  backward   forward   forward   small   medB 
  backward   forward   forward   backward   medB 
  backward   forward   forward   forward   bigB 
  backward   forward   bigB   small   zero 
  backward   forward   bigB   backward   zero 
  backward   forward   bigB   forward   zero 
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  backward   forward   bigF   small   bigB 
  backward   forward   bigF   backward   bigB 
  backward   forward   bigF   forward   bigB 
  backward   bigB   small   small   bigF 
  backward   bigB   small   backward   bigF 
  backward   bigB   small   forward   medF 
  backward   bigB   backward   small   bigF 
  backward   bigB   backward   backward   bigF 
  backward   bigB   backward   forward   medF 
  backward   bigB   forward   small   medF 
  backward   bigB   forward   backward   bigF 
  backward   bigB   forward   forward   forward
  backward   bigB   bigB   small   bigF 
  backward   bigB   bigB   backward   bigF 
  backward   bigB   bigB   forward   bigF 
  backward   bigB   bigF   small   zero 
  backward   bigB   bigF   backward   zero 
  backward   bigB   bigF   forward   zero 
  backward   bigF   small   small   bigB 
  backward   bigF   small   backward   bigB 
  backward   bigF   small   forward   bigB 
  backward   bigF   backward   small   bigB 
  backward   bigF   backward   backward   medB 
  backward   bigF   backward   forward   bigB 
  backward   bigF   forward   small   bigB 
  backward   bigF   forward   backward   bigB 
  backward   bigF   forward   forward   bigB 
  backward   bigF   bigB   small   zero 
  backward   bigF   bigB   backward   zero 
  backward   bigF   bigB   forward   zero 
  backward   bigF   bigF   small   bigB 
  backward   bigF   bigF   backward   bigB 
  backward   bigF   bigF   forward   bigB 
  forward   small   small   small   forward
  forward   small   small   backward   forward
  forward   small   small   forward   zero 



www.manaraa.com

 

 

261

Appendix H (Continued) 

 

Table 15 (Continued) 

  forward   small   backward   small   forward
  forward   small   backward   backward   medF 
  forward   small   backward   forward   forward
  forward   small   forward   small   zero 
  forward   small   forward   backward   forward
  forward   small   forward   forward   zero 
  forward   small   bigB   small   medF 
  forward   small   bigB   backward   bigF 
  forward   small   bigB   forward   forward
  forward   small   bigF   small   backward
  forward   small   bigF   backward   zero 
  forward   small   bigF   forward   backward
  forward   backward   small   small   medF 
  forward   backward   small   backward   bigF 
  forward   backward   small   forward   medF 
  forward   backward   backward   small   medF 
  forward   backward   backward   backward   bigF 
  forward   backward   backward   forward   medF 
  forward   backward   forward   small   medF 
  forward   backward   forward   backward   medF 
  forward   backward   forward   forward   forward
  forward   backward   bigB   small   bigF 
  forward   backward   bigB   backward   bigF 
  forward   backward   bigB   forward   bigF 
  forward   backward   bigF   small   zero 
  forward   backward   bigF   backward   zero 
  forward   backward   bigF   forward   zero 
  forward   forward   small   small   zero 
  forward   forward   small   backward   forward
  forward   forward   small   forward   zero 
  forward   forward   backward   small   zero 
  forward   forward   backward   backward   forward
  forward   forward   backward   forward   zero 
  forward   forward   forward   small   zero 
  forward   forward   forward   backward   zero 
  forward   forward   forward   forward   backward
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  forward   forward   bigB   small   medF 
  forward   forward   bigB   backward   medF 
  forward   forward   bigB   forward   forward
  forward   forward   bigF   small   medB 
  forward   forward   bigF   backward   backward
  forward   forward   bigF   forward   bigB 
  forward   bigB   small   small   bigF 
  forward   bigB   small   backward   bigF 
  forward   bigB   small   forward   bigF 
  forward   bigB   backward   small   bigF 
  forward   bigB   backward   backward   bigF 
  forward   bigB   backward   forward   bigF 
  forward   bigB   forward   small   bigF 
  forward   bigB   forward   backward   bigF 
  forward   bigB   forward   forward   medF 
  forward   bigB   bigB   small   bigF 
  forward   bigB   bigB   backward   bigF 
  forward   bigB   bigB   forward   bigF 
  forward   bigB   bigF   small   zero 
  forward   bigB   bigF   backward   zero 
  forward   bigB   bigF   forward   zero 
  forward   bigF   small   small   bigB 
  forward   bigF   small   backward   medB 
  forward   bigF   small   forward   bigB 
  forward   bigF   backward   small   medB 
  forward   bigF   backward   backward   backward
  forward   bigF   backward   forward   bigB 
  forward   bigF   forward   small   bigB 
  forward   bigF   forward   backward   medB 
  forward   bigF   forward   forward   bigB 
  forward   bigF   bigB   small   zero 
  forward   bigF   bigB   backward   zero 
  forward   bigF   bigB   forward   zero 
  forward   bigF   bigF   small   bigB 
  forward   bigF   bigF   backward   bigB 
  forward   bigF   bigF   forward   bigB 
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  bigB   small   small   small   backward
  bigB   small   small   backward   backward
  bigB   small   small   forward   backward
  bigB   small   backward   small   backward
  bigB   small   backward   backward   zero 
  bigB   small   backward   forward   backward
  bigB   small   forward   small   medB 
  bigB   small   forward   backward   backward
  bigB   small   forward   forward   medB 
  bigB   small   bigB   small   zero 
  bigB   small   bigB   backward   zero 
  bigB   small   bigB   forward   zero 
  bigB   small   bigF   small   bigB 
  bigB   small   bigF   backward   medB 
  bigB   small   bigF   forward   bigB 
  bigB   backward   small   small   zero 
  bigB   backward   small   backward   zero 
  bigB   backward   small   forward   backward
  bigB   backward   backward   small   zero 
  bigB   backward   backward   backward   zero 
  bigB   backward   backward   forward   backward
  bigB   backward   forward   small   backward
  bigB   backward   forward   backward   zero 
  bigB   backward   forward   forward   medB 
  bigB   backward   bigB   small   forward
  bigB   backward   bigB   backward   medF 
  bigB   backward   bigB   forward   zero 
  bigB   backward   bigF   small   bigB 
  bigB   backward   bigF   backward   medB 
  bigB   backward   bigF   forward   bigB 
  bigB   forward   small   small   medB 
  bigB   forward   small   backward   medB 
  bigB   forward   small   forward   bigB 
  bigB   forward   backward   small   medB 
  bigB   forward   backward   backward   backward
  bigB   forward   backward   forward   medB 



www.manaraa.com

 

 

264

Appendix H (Continued) 

 

Table 15 (Continued) 

  bigB   forward   forward   small   medB 
  bigB   forward   forward   backward   medB 
  bigB   forward   forward   forward   bigB 
  bigB   forward   bigB   small   zero 
  bigB   forward   bigB   backward   zero 
  bigB   forward   bigB   forward   zero 
  bigB   forward   bigF   small   bigB 
  bigB   forward   bigF   backward   bigB 
  bigB   forward   bigF   forward   bigB 
  bigB   bigB   small   small   forward
  bigB   bigB   small   backward   medF 
  bigB   bigB   small   forward   forward
  bigB   bigB   backward   small   medF 
  bigB   bigB   backward   backward   bigF 
  bigB   bigB   backward   forward   medF 
  bigB   bigB   forward   small   forward
  bigB   bigB   forward   backward   forward
  bigB   bigB   forward   forward   zero 
  bigB   bigB   bigB   small   bigF 
  bigB   bigB   bigB   backward   bigF 
  bigB   bigB   bigB   forward   bigF 
  bigB   bigB   bigF   small   zero 
  bigB   bigB   bigF   backward   zero 
  bigB   bigB   bigF   forward   zero 
  bigB   bigF   small   small   bigB 
  bigB   bigF   small   backward   bigB 
  bigB   bigF   small   forward   bigB 
  bigB   bigF   backward   small   bigB 
  bigB   bigF   backward   backward   medB 
  bigB   bigF   backward   forward   bigB 
  bigB   bigF   forward   small   bigB 
  bigB   bigF   forward   backward   bigB 
  bigB   bigF   forward   forward   bigB 
  bigB   bigF   bigB   small   zero 
  bigB   bigF   bigB   backward   zero 
  bigB   bigF   bigB   forward   zero 
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Table 15 (Continued) 

  bigB   bigF   bigF   small   bigB 
  bigB   bigF   bigF   backward   bigB 
  bigB   bigF   bigF   forward   bigB 
  bigF   small   small   small   forward
  bigF   small   small   backward   forward
  bigF   small   small   forward   forward
  bigF   small   backward   small   medF 
  bigF   small   backward   backward   medF 
  bigF   small   backward   forward   forward
  bigF   small   forward   small   forward
  bigF   small   forward   backward   forward
  bigF   small   forward   forward   zero 
  bigF   small   bigB   small   bigF 
  bigF   small   bigB   backward   bigF 
  bigF   small   bigB   forward   medF 
  bigF   small   bigF   small   zero 
  bigF   small   bigF   backward   zero 
  bigF   small   bigF   forward   zero 
  bigF   backward   small   small   medF 
  bigF   backward   small   backward   bigF 
  bigF   backward   small   forward   medF 
  bigF   backward   backward   small   medF 
  bigF   backward   backward   backward   bigF 
  bigF   backward   backward   forward   medF 
  bigF   backward   forward   small   medF 
  bigF   backward   forward   backward   medF 
  bigF   backward   forward   forward   forward
  bigF   backward   bigB   small   bigF 
  bigF   backward   bigB   backward   bigF 
  bigF   backward   bigB   forward   bigF 
  bigF   backward   bigF   small   zero 
  bigF   backward   bigF   backward   zero 
  bigF   backward   bigF   forward   zero 
  bigF   forward   small   small   zero 
  bigF   forward   small   backward   forward
  bigF   forward   small   forward   zero 
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Table 15 (Continued) 

  bigF   forward   backward   small   forward
  bigF   forward   backward   backward   medF 
  bigF   forward   backward   forward   zero 
  bigF   forward   forward   small   zero 
  bigF   forward   forward   backward   forward
  bigF   forward   forward   forward   zero 
  bigF   forward   bigB   small   bigF 
  bigF   forward   bigB   backward   bigF 
  bigF   forward   bigB   forward   medF 
  bigF   forward   bigF   small   backward
  bigF   forward   bigF   backward   zero 
  bigF   forward   bigF   forward   medB 
  bigF   bigB   small   small   bigF 
  bigF   bigB   small   backward   bigF 
  bigF   bigB   small   forward   bigF 
  bigF   bigB   backward   small   bigF 
  bigF   bigB   backward   backward   bigF 
  bigF   bigB   backward   forward   bigF 
  bigF   bigB   forward   small   bigF 
  bigF   bigB   forward   backward   bigF 
  bigF   bigB   forward   forward   medF 
  bigF   bigB   bigB   small   bigF 
  bigF   bigB   bigB   backward   bigF 
  bigF   bigB   bigB   forward   bigF 
  bigF   bigB   bigF   small   zero 
  bigF   bigB   bigF   backward   zero 
  bigF   bigB   bigF   forward   zero 
  bigF   bigF   small   small   backward
  bigF   bigF   small   backward   backward
  bigF   bigF   small   forward   medB 
  bigF   bigF   backward   small   backward
  bigF   bigF   backward   backward   zero 
  bigF   bigF   backward   forward   backward
  bigF   bigF   forward   small   medB 
  bigF   bigF   forward   backward   medB 
  bigF   bigF   forward   forward   bigB 
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Table 15 (Continued) 

  bigF   bigF   bigB   small   zero 
  bigF   bigF   bigB   backward   zero 
  bigF   bigF   bigB   forward   zero 
  bigF   bigF   bigF   small   bigB 
  bigF   bigF   bigF   backward   bigB 
  bigF   bigF   bigF   forward   bigB 

 

H.3 Collective Controller Rules 

 

Table 16: Fuzzy Rules for the Collective Controller 

If 
Error 

is: & 
Velocity 

is: & Acceleration is: then 
Collective 

is: 
                
  down   down   Down   up 
  down   down   small   neutral 
  down   down   up   neutral 
  down   small   down   neutral 
  down   small   small   down 
  down   small   up   down 
  down   Up   down   Down 
  down   Up   small   medDown
  down   up   up   medDown
  down   bigD   down   bigUp 
  down   bigD   small   medUp 
  down   bigD   up   medUp 
  down   bigU   down   bigDown 
  down   bigU   small   bigDown 
  down   bigU   up   bigDown 
  up   down   down   medUp 
  up   down   small   medUp 
  up   down   up   Up 
  up   small   down   medUp 
  up   small   small   up 
  up   small   up   up 
  up   up   down   neutral 
  up   up   small   neutral 
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Appendix H (Continued) 

 

Table 16 (Continued) 

  up   up   up   down 
  up   bigD   down   bigUp 
  up   bigD   small   bigUp 
  up   bigD   up   bigUp 
  up   bigU   down   medDown
  up   bigU   small   medDown
  up   bigU   up   bigDown 
  bigD   down   down   up 
  bigD   down   small   neutral 
  bigD   down   up   neutral 
  bigD   small   down   down 
  bigD   small   small   down 
  bigD   small   up   medDown
  bigD   up   down   medDown
  bigD   up   small   medDown
  bigD   up   up   medDown
  bigD   bigD   down   bigUp 
  bigD   bigD   small   medUp 
  bigD   bigD   up   medUp 
  bigD   bigU   down   bigDown 
  bigD   bigU   small   bigDown 
  bigD   bigU   up   bigDown 
  bigU   down   down   bigUp 
  bigU   down   small   medUp 
  bigU   down   up   medUp 
  bigU   small   down   medUp 
  bigU   small   small   up 
  bigU   small   up   up 
  bigU   up   down   up 
  bigU   up   small   up 
  bigU   up   up   neutral 
  bigU   bigD   down   bigUp 
  bigU   bigD   small   bigUp 
  bigU   bigD   up   bigUp 
  bigU   bigU   down   down 
  bigU   bigU   small   down 
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Table 16 (Continued) 

  bigU   bigU   up   medDown
  small   down   down   medUp 
  small   down   small   up 
  small   down   up   up 
  small   small   down   up 
  small   small   small   neutral 
  small   small   up   down 
  small   up   down   down 
  small   up   small   down 
  small   up   up   medDown
  small   bigD   down   bigUp 
  small   bigD   small   bigUp 
  small   bigD   up   bigUp 
  small   bigU   Down   bigDown 
  small   bigU   small   bigDown 
  small   bigU   Up   bigDown 

 

H.4 Yaw Controller Rules 

 

Table 17: Fuzzy Rules for the Yaw Controller 

If Error is: then Yaw is:
    
 right  right 
 left  left 
 bigR  bigR 
 bigL  bigLeft
 small  small 
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Appendix I UDP Packages Available from X-Plane 

 

Table 18: UDP Data Packages Available from X-Plane [99] 

UDP 00 Times. 
V0 Frame Rate (frames/sec) - Number of Frames rendered per second. [float] 

V1 Time Ratio (ratio) This is how close XP time matches real time. Ideal ratio is 1. 
[float] 

UDP 01 Time Elapsed, cockpit Timer... 
V0 Time Elapsed - Seconds. [float] 
V1 Cockpit Timer - Seconds. [float] 
V2 Local Time (hours expressed digitally) [float] 
V3 Zulu Time (hours) [float] 

UDP 02 Speed, Vertical Speed 
V0 True Speed in Kts. [float] 
V1 Indicated Speed in kts. [float] 
V2 True Speed in mph [float] 
V3 Indicated Speed in mph [float] 
V4 Vertical Speed in feet/minute. [float] 

UDP 03 Mach, G-Loads 
V0 Mach Ratio [float] 
V1 G-Load Normal 
V2 G-Load Axial 
V3 G-Load Side 

UDP 04 Alpha, Beta (Attack Angles) 
V0 Alpha (angle of attack) - in degrees. [float] 
V1 Beta (Sideslip/Yaw) - in degrees. [float] 

UDP 05 Atmosphere - sea level 
V0 SLprs inHG 
V1 SLtmp degC 
V2 Wind Speed 
V3 Wind Direction 

UDP 06 Atmosphere – ambient 
V0 AMprs inHG 
V1 AMtmp degC 
V2 LEtmp degC 
V3 gravi fts2 
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Appendix I (Continued)  

 

Table 18 (Continued) 

V4 dens part 
V5 Q psf 
V6 A ktas 

UDP 07 Atmosphere – systems 
V0 ALprs inHG 
V1 edens part 
V2 vacuum ratio 

UDP 08 Joystick ail/elev/rudd/swe/vec 
V0 Joystick Elevator Input (0-1). (These are the 'user' control inputs) [float] 
V1 Joystick Aileron Input (0-1) [float] 
V2 Joystick Rudder Input (0-1) [float] 
V3 Joystick Sweep Request (Degrees) [float] 
V4 Joystick Vector Request (Degrees) [float] 

UDP 09 Artificial Stability Values ail/elv/rud 
V0 Elevator. (These are the calculated Artificial Stability Values) [float] 
V1 Aileron. [float] 
V2 Rudder. [float] 

UDP 10 Flight Condition Values ail/elv/rud 
V0 Elevator. (Surface) (These are the sum of UDP #8 and #9) [float] 
V1 Aileron (Surface) [float] 
V2 Rudder (Surface) [float] 
V3 Nosewheel Steering (degrees) [float] 

UDP 11 Wing Sweep, Thrust Vector 
V0 Sweep - Ratio [float] 
V1 Sweep 1 (deg) [float] 
V2 Sweep 2 (deg) [float] 
V3 Sweep 3 (deg) [float] 
V4 Thrust Vector (deg) [float] 

UDP 12 Trim, Flap, Slat, Speedbrakes 
V0 Elevator Trim [float] 
V1 Aileron Trim [float] 
V2 Rudder Trim [float] 
V3 Rotor Trim [float] 
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Appendix I (Continued)  

 

Table 18 (Continued) 

V4 Flap Request  

V5 Flap Position  

V6 Slat (ratio) [float]  

V7 Speedbrake (ratio) [float]  

UDP 13 Gear & Brakes 
V0 Gear, 1=Down, 0=Up [integer]  

V1 Wheelbrake. Part (1=on)  

V2 Left Brake (0-1) [float]  

V3 Right Brake (0-1) [float]  

UDP 14 Angular Moments 
V0 M (ft/lb) [float]  

V1 L (ft/lb) [float]  

V2 N (ft/lb) [float]  

UDP 15 Angular Accelerations 
V0 Qdot - d/ss [float]  

V1 Pdot - d/ss [float]  

V2 Rdot - d/ss [float]  

UDP 16 Angular Velocities 
V0 Q - d/s [float]  

V1 P - d/s [float]  

V2 R - d/s [float]  

UDP 17 Pitch, Roll, Headings 
V0 Pitch - degrees [float]  

V1 Roll - degrees [float]  

V2 True Heading - degrees [float]  

V3 Magnetic Heading - degrees [float]  

V4 Mag Var – degrees [float]  

V5 Heading Bug - degrees (true) [float]  

UDP 18 Lat, Lon, Altitude 
V0 Latitude – degrees (Origin Reference Point) [float]  

V1 Longitude - degrees [float]  

V2 Altitude - fmsl [float]  

V3 Altitude - fagl [float]  



www.manaraa.com

 

 

273

Appendix I (Continued)  

 

Table 18 (Continued) 

V4   
V5 Altitude – indicated 
V6 Latitude - South [float] 
V7 Longitude - West [float] 

UDP 19 X, Y, Z, distance traveled 
V0 X - m [float] 
V1 Y - m [float] 
V2 Z - m [float] 
V3 Velocity in X – m [float] 
V4 Velocity in Y – m [float] 
V5 Velocity in Z – m [float] 
V6 Distance - feet [float] 
V7 Distance - nm [float] 

UDP 20 All Planes: X 
V0 X - m [float] 
V1 Repeated for each craft... 

UDP 21 All Planes: Y 
V0 Y - m [float] 
V1 Repeated for each craft... 

UDP 22 All Planes: Z 
V0 Z - m [float] 
V1 Repeated for each craft... 

UDP 23 Throttle Settings 
V0 Throttle Setting (Part). Negative value indicates reverse thrust. [float] 
V1 This repeats for each engine... 

UDP 24 Reverse Settings 
V0 Reverse Thrust Setting (0/1). [integer] 
V1 This repeats for each engine... 

UDP 25 Propellor Settings 
V0 Propellor Setting (rpm). [float] 
V1 This repeats for each propellor... 

UDP 26 Mixture Settings 
V0 Mixture Setting (Ratio). [float] 
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Appendix I (Continued)  

 

Table 18 (Continued) 

V1 This repeats for each Engine...  

UDP 27 Carb Heat Settings 
V0 Carb Heat Setting (Ratio). [float]  

V1 This repeats for each Carb...  

UDP 28 Ignition Settings 
V0 Ignition Switch Position (0,1,2 or 3). [integer]  

V1 This repeats for each Ignition...  

UDP 29 Cowl Flap Settings 
V0 Cowl Flap Setting (Set). [float]  

V1 This repeats for each Cowl...  

UDP 30 Engine Power 
V0 Engine 1 - hp [float]  

V1 Repeated for each engine...  

UDP 31 Engine Thrust 
V0 Engine 1 - lb [float]  

V1 Repeated for each engine...  

UDP 32 Engine Torque 
V0 Engine 1 - ft/lb [float]  

V1 Repeated for each engine...  

UDP 33 Engine RPM 
V0 Engine 1 - rpm [float]  

V1 Repeats for each engine...  

UDP 34 Prop RPM 
V0 Prop 1 - rpm [float]  

V1 Repeated for each prop...  

UDP 35 Prop Pitch 
V0 Prop 1 - degrees [float]  

V1 Repeated for each prop...  

UDP 36 Propwash/Jetwash 
V0 Prop 1 - knots [float]  

V1 Repeated for each prop...  

UDP 37 Manifold Pressures 
V0 Engine 1 - inhg [float]  
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Appendix I (Continued)  

 

Table 18 (Continued) 

V1 Repeated for each engine...  

UDP 38 N1 
V0 Engine 1 - Percent [float]  

V1 Repeated for each engine...  

UDP 39 EPR 
V0 Engine 1 - Part [float]  

V1 Repeated for each engine...  

UDP 40 Fuel Flow 
V0 Engine 1 - lb/hour [float]  

V1 Repeated for each engine...  

UDP 41 EGT 
V0 Engine 1 - Ratio [float]  

V1 Repeated for each engine...  

UDP 42 ITT 
V0 ITT1 (deg) [float]  

V1 Repeats for each engine...  

UDP43 Oil Pressures 
V0 Pressure 1 (ratio) [float]  

V1 Repeats for each engine...  

UDP44 Oil Temperatures 
V0 Temp 1 (ratio) [float]  

V1 Repeats for each engine...  

UDP45 Alternator Amps 
V0 Amps 1 (ratio) [float]  

V1 Repeats for each engine...  

UDP46 Battery Amps 
V0 Battery 1 (ratio) [float]  

V1 Repeats for each...  

UDP47 Battery Voltage 
V0 Volts 1 (ratio) [float]  

V1 Repeats for each...  

UDP48 Fuel Pumps 
V0 Pump 1 (0/1)  
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Appendix I (Continued)  

 

Table 18 (Continued) 

V1 Repeats for each...  

UDP49 Generators 
V0 Generator 1 (0/1)  

V1 Repeats for each...  

UDP50 Inverters 
V0 Inverter 1 (0/1)  

V1 Repeats for each...  

UDP51 Starter Timeout 
V0 Starter 1 (secs/1)  

V1 Repeats for each...  

UDP 52 Aero Forces 
V0 Lift (lb) [float]  

V1 Drag (lb) [float]  

V2 Side (lb) [float]  

UDP 53 Engine Forces 
V0 Normal (lb) [float]  

V1 Axial (lb) [float]  

V2 Side (lb) [float]  

UDP 54 Landing Gear - Vertical Forces 
V0 Gear 1 (lb) [float]  

V1 Gear 2 (lb) [float]  

V2 Gear 3 (lb) [float]  

UDP 55 Landing Gear - Vertical Deflections 
V0 Gear 1 (ft) [float]  

V1 Gear 2 (ft) [float]  

V2 Gear 3 (ft) [float]  

UDP 56 Lift over Drag Ratio 
V0 L/D (Ratio) [float]  

V1    

UDP 57 Prop Efficiency 
V0 Prop 1 (ratio) [float]  

V1 Repeats for each Prop...  

UDP 58 Aileron Deflections 
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Appendix I (Continued)  

 

Table 18 (Continued) 

V0 Left Aileron 2 (degrees) [float]  

V1 Left Aileron 1 (degrees) [float]  

V2 Right Aileron 1 (degrees) [float]  

V3 Right Aileron 2 (degrees) [float]  

UDP 59 Roll Spoiler Deflections 
V0 Spoiler 1 (degrees) [float]  

V1 Spoiler 2 (degrees) [float]  

UDP 60 Elevator Deflections 
V0 Elevator 1 (degrees) [float]  

V1 Elevator 2 (degrees) [float]  

UDP 61 Rudder Deflections 
V0 Rudder (degrees) [float]  

UDP 62 Yaw-Brake Deflections 
V0 Drudd (degrees) [float]  

V1 Drudd (degrees) [float]  

UDP 63 TOTAL vertical thrust vectors 
V0 Vert1 (vector) [float]  

V1 vert2 (vector) [float]  

UDP 64 TOTAL lateral thrust vectors 
V0 Lateral1 (vector) [float]  

V1 Lateral2 (vector) [float]  

UDP 65 Pitch cyclic Disc Tilts 
V0 cyclic [float]  

V1 cyclic [float]  

UDP 66 Roll Cyclic Disc Tilts 
V0 cyclic [float]  

V1 cyclic [float]  

UDP 67 pitch Cyclic Flapping 
V0 flap [float]  

V1 flap [float]  

UDP 68 Roll Cyclic Flapping 
V0 flap [float]  

V1 flap [float]  
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Table 18 (Continued) 

UDP 69 Payload Weights 
V0 Payload (lb) [float]  

V1 Fuel1 (lb) [float]  

V2 Fuel2 (lb) [float]  

V3 Fuel3 (lb) [float]  

V4 Jettison (lb) [float]  

V5 Fuel Tank 1 % Full [float]  

V6 Fuel Tank 2 % Full [float]  

V7 Fuel Tank 3 % Full [float]  

UDP 70 Total Weights & CG 
V0 Empty (lb) [float]  

V1 Current (lb) [float]  

V2 Maximum (lb) [float]  

V3    

V4 CofG (ftref) [float]  

UDP 66 Ground effect on lift, wings 
V0 Wing1 (L cl*) [float]  

V1 Wing1 (R cl*) [float]  

V2 Wing2 (L cl*) [float]  

V3 Wing2 (R cl*) [float]  

V4 Wing3 (L cl*) [float]  

V5 Wing3 (R cl*) [float]  

UDP 67 Ground effect on drag, wings 
V0 Wing1 (L cd*) [float]  

V1 Wing1 (R cd*) [float]  

V2 Wing2 (L cd*) [float]  

V3 Wing2 (R cd*) [float]  

V4 Wing3 (L cd*) [float]  

V5 Wing3 (R cd*) [float]  

UDP 68 Ground effect on lift, stabs 
V0 Hstab (L cl*) [float]  

V1 Hstab (R cl*) [float]  

V2 Vstab1 (cl*) [float]  
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Table 18 (Continued) 

V3 Vstab2 (cl*) [float]  

UDP 69 Ground effect on drag, stabs 
V0 Hstab (L cd*) [float]  

V1 Hstab (R cd*) [float]  

V2 Vstab1 (cd*) [float]  

V3 Vstab2 (cd*) [float]  

UDP 70 Ground effect on lift, props 
V0 Prop1 (cl*) [float]  

V1 Prop2 (cl*) etc [float]  

UDP 71 Ground effect on drag, props 
V0 Prop1 (cd*) [float]  

V1 Prop2 (cd*) etc [float]  

UDP 77 Wing Lift 
V0 Wing1 (lift) [float]  

V1 Wing1 (lift) [float]  

V2 Wing2 (lift) [float]  

V3 Wing2 (lift) [float]  

V4 Wing3 (lift) [float]  

V5 Wing3 (lift) [float]  

UDP 78 Wing Drag 
V0 Wing1 (drag) [float]  

V1 Wing1 (drag) [float]  

V2 Wing2 (drag) [float]  

V3 Wing2 (drag) [float]  

V4 Wing3 (drag) [float]  

V5 Wing3 (drag) [float]  

UDP 79 Stab Lift 
V0 Hstab (lift) [float]  

V1 Hstab (lift) [float]  

V2 Vstab1 (lift) [float]  

V3 Vstab2 (lift) [float]  

UDP 80 Stab Drag 
V0 Hstab (drag) [float]  
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Table 18 (Continued) 

V1 Hstab (drag) [float]  

V2 Vstab1 (drag) [float]  

V3 Vstab2 (drag) [float]  

UDP 81 Com 1/2 Frequency 
V0 Com 1 Frequency [integer]  

V1 Com 1 Standby Frequency [integer]  

V2 Com 2 Frequency [integer]  

V3 Com 2 Standby Frequency [integer]  

UDP 82 NAV 1/2 Frequency 
V0 NAV 1 Frequency [integer]  

V1 NAV 1 Standby Frequency [integer]  

V2 NAV 2 Frequency [integer]  

V3 NAV 2 Standby Frequency [integer]  

V4 NAV 1 Type  

V5 NAV 2 Type  

UDP 83 NAV 1/2 OBS 
V0 NAV 1 OBS [float]  

V1 NAV 1 flag (0=off, 1=To, 2=From) [integer]  

V2 NAV 2 OBS [float]  

V3 NAV 2 flag (0=off, 1=To, 2=From) [integer]  

UDP 84 NAV 1/2 Deflections 
V0 NAV 1 hdef (degrees) [float]  

V1 NAV 1 vdef (degrees) [float]  

V2 NAV 2 hdef (degrees) [float]  

V3 NAV 2 vdef (degrees) [float]  

UDP 85 ADF 1/2 Status 
V0 ADF 1 Frequency [integer]  

V1 ADF 1 card (degrees) [float]  

V2 ADF 1 Relative Bearing (degrees) [float]  

V3    

V4 ADF 2 Frequency [integer]  

V5 ADF 2 card (degrees) [float]  

V6 ADF 2 Relative Bearing (degrees) [float]  
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Table 18 (Continued) 

V7    

UDP 86 DME Status 
V0 Select [integer]  

V1 Distance [float]  

V2 Speed [float]  

V3 Time [float]  

V4 Found  

V5    

V6 Freq  

V7 Found  

UDP 87 GPS Status 

V0 Mode [integer] 
(1=APT 2=NDB 3=VOR 11=INT)   

V1 Index [integer]  

V2 Distance nm [float]  

V3 OBS mag [float]  

V4 Course - true [float]  

V5 Href dots [integer]  

V6 Flag (to/from)  

UDP 88 XPNDR Status 
V0 Frequency [integer]  

V1 ID [integer]  

V2 Inter (0/1) [integer]  

UDP 89 Autopilot Status 
V0 Speed [integer]  

V1 Heading [integer]  

V2 Altitude [integer]  

V3 Back Course [integer]  

V4 Speed [float]  

V5 Heading [float]  

V6 Altitude [float]  

V7 VVI [float]  

UDP 90 FS/HSI/RMI/Audio/Map 
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Table 18 (Continued) 

V0 Mode [integer]  

V1 Pitch (degrees) [float]  

V2 Roll (degrees) [float]  

V3 HSI (select) [integer]  

V4 RMI (select) [integer]  

V5 

Audio Select. [integer] 
   0=NAV1 
   1=NAV2 
   2=ADF1 
   3=ADF2 
   5=DME 
   10=COM1 
   11=COM2 

 

V6 Map Range Select [integer]  
(This is the map range switch position, 0-6)   

UDP 91 Marker & Audio Morse 
V0 Outer Marker Morse (0/1) [integer]  

V1 Middle Marker Morse (0/1) [integer]  

V2 Inner Marker Morse (0/1) [integer]  

V3 Audio (active) [integer]  

V4 Gear Audio (active) [integer]  

UDP 92 Switches 1 
V0 Battery (0/1) [integer]  

V1 Avionics (0/1) [integer]  

V2 Nav Lights (0/1) [integer]  

V3 Beacon (0/1) [integer]  

V4 Strobe (0/1) [integer]  

V5 Landing Lights (0/1) [integer]  

V6 HUD Power (0-1) [float]  

V7 HUD Brightness (0-1) [float]  

UDP 93 Switches 2 
V0 Pitot Heat (0/1) [integer]  

V1 Anti-Ice (0/1) [integer]  

V2 Auto-Brake (0/1) [integer]  

V3 Auto-Feather (0/1) [integer]  
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Appendix I (Continued)  

 

Table 18 (Continued) 

V4 Yaw Damper (0/1) [integer]  

V5 Art Stability (0/1) [integer]  

V6 FADEC Power (0-1) [integer]  

V7 FADEC Power (0-1) [integer]  

UDP 94 Switches 3 
V0 Prop Sync (0/1) [integer]  

V1 Arrestor (0/1) [integer]  

V2 

ECAM (Mode) [integer] 
   0=Engines 
   1=Fuel 
   2=Stat (control positions) 
   3=Hydraulics 
   4=Failures 

 

V3 Radal (Bug) [float]  

V4 P-Rot (Power) [integer]  

V5 P-Rot (Level) [integer]  

V6 Fuel Selector [integer]  

V7 Auto Feather  

UDP95 Pressurisation 
V0 Alt (set)  

V1 vvi (set)  

V2 alt (actual)  

V3 vvi (actual)  

V4 test (time)  

V5 bleed (air)  

UDP96 Weapon Stats 
V0 Heading (to target)  

V1 ptch (to target)  

V2 R (deg/sec)  

V3 Q (deg/sec)  

V4 rudder (ratio)  

V5 elev (ratio)  

V6 V (knots)  

V7 Distance (feet)  
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Table 18 (Continued) 

UDP97 Camera Location 
V0 X [float]  

V1 Y [float]  

V2 Z [float]  

V3 Pitch (degrees) [float]  

V4 Heading (degrees) [float]  

V5 Roll (degrees) [float]  

V6 Zoom [float]  

UDP98 Warnings 
V0 Annunciator (Test) [integer]  

V1 Annunciator (Master Accept) [integer]  

V2 Master Caution [integer]  

V3 Stall Warning (0/1) [integer]  

V4 Ice Warning (0/1) [float]  

V5 Paused (0/1) [integer]  

UDP99 Anunciators – General 
V0 Master Caution  

V1 Master Accept  

V2 Auto Disconnect  

V3 Low Vacuum  

V4 Low Voltage  

V5 Fuel Quantity  

V6 Hydraulic Pressure  

UDP100 Anunciators – Engine 
V0 Fuel Pressure  

V1 Oil Pressure  

V2 Oil Temperature  

V3 Inverter Warn  

V4 Generator Warn  

V5 Chip Detect  

V6 Engine Fire  

V6 Auto Ignition  

UDP101 Vspeeds 
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Appendix I (Continued)  

 

Table 18 (Continued) 

V0 Vso (ktas) Stall Speed in Landing Configuration [float]  

V1 Vs (ktas) Stall Speed in Cruise Configuration [float]  

V2 Vfe (ktas) Max Velocity with Flaps Extended [float]  

V3 Vle (ktas) Max Velocity with Gear Extended [float]  

V4 Vno (ktas) Max Sturctural Cruising Speed [float]  

V5 Vne (ktas) Velocity Never Exceed [float]  

V6 Mmo (Mach)  

UDP102 Hardware Options 
V0 Pedal - nobrk [integer]  

V1 Pedal - nobrk [integer]  

V2 PFC - function [integer]  

V3 PFC - Cert [integer]  

V4 PFC - Pedal [integer]  

V5 PFC - Cirrs [integer]  
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